Section VII

Chi-square test for comparing proportions and frequencies

F test for means

proportions: chi-square test

Z test for comparing proportions between two independent groups

$$Z = \frac{P_1 - P_2}{SE_d}$$

 $SE_d = \sqrt{P_1(1-P_1)/n_1 + P_2(1-P_2)/n_2} *$

Definition: $Z^2 = \chi^2 (1) = \text{chi-square}$ stat with one degree of freedom (df=1).

What if there are many groups / many proportions to compare and we worry about multiplicity? Can do overall (omnibus) χ^2 test. Overall χ^2 test with **k-1** degrees of freedom is for testing null hypothesis that $\pi_1 = \pi_2 = \pi_3 = \dots \pi_k = \pi$. Analog to overall F test in linear models / ANOVA for comparing many β s or means.

^{*} Technically, under the null hypothesis $\pi_1 = \pi_2 = \pi$ so $SE_d = \sqrt{p(1-p)/n_1 + p(1-p)/n_2} = \sqrt{p(1-p) \left[\frac{1}{n_1} + \frac{1}{n_2} \right]}$ where $p = \frac{(n_1p_1 + n_2p_2)}{(n_1+n_2)}$ is the estimate of π .

Chi-square test (omnibus test) Controlling for multiplicity in hypothesis testing

Ex: Troublesome morning sickness

137/350 = 39% have troublesome morning sickness overall after treatment (100% had it before treatment)

observed frequencies

	no tx	accupress.	dummy	total
yes	67	29	41	137
no	<u>52</u>	90	71	213
tota	1 119	119	112	350
Pct	yes 56	5% 24%	37%	39%

What frequencies would be expected if there is <u>no association</u> between treatment and outcome? (Null hypothesis: $\pi_1 = \pi_2 = \pi_3 = \pi$)

Expected frequencies if no assn.

yes	no tx 46.6	accupress. 46.6	dummy 43.8	total 137	
no	72.4	72.4	68.1	213	
tota	1 119	119	112	350	

39% yes, 61% no in each group

Calculating expected frequency – Example for the "yes, no tx" cell.

Expected freq= 119(137/350) = 46.6

If there is no association, the observed and expected frequencies should be similar.

Chi-square statistic is a measure of squared differences between observed and expected frequencies.

$$\chi^2 = \sum_{\text{All cells}} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

In this example (with six cells) $\chi^{2} = (\underline{67-46.6})^{2} + (\underline{52-72.4})^{2} + \dots$ $46.6 \qquad 72.4$ $\dots + (\underline{71-68.1})^{2} = 25.91$ 68.1

df =(# rows-1)(# cols -1)= (2-1)(3-1)=2

p value < 0.001 (get from =CHIDIST(χ^2 ,df) in =EXCEL or chi-square table)

If this overall p value is NOT significant, we conclude all proportions are not significantly different from each other at the α level, that is, there is no association.

F statistic for means is the analog of the chi-square statistics for proportions

$$\mathbf{F} = \Sigma \frac{(\mathbf{\overline{Y_i}} - \mathbf{\overline{Y}})^2 \mathbf{n_i}}{(\mathbf{S_p})^2} \frac{\mathbf{N_i}}{\mathbf{N_i}}$$

Where Y_i is the mean of the ith group

n_i is the sample size in the ith group (i=1, 2, 3, ...k)

Y = overall mean, k=number of groupsand S_p^2 is the squared pooled standard deviation defined by

$$S_{p}^{2} = \underline{(n_{1}-1) S_{1}^{2} + (n_{2}-1) S_{2}^{2} + ... + (n_{k}-1)S_{k}^{2}}_{(n_{1}+n_{2}+...+n_{k}) - k}$$

If the overall F based p value is not significant, we conclude none of the means are significantly different from each other.

Rule of thumb for chi-square significance

If the null hypothesis is **true**, the expected (average) value of the $\chi 2$ statistic is equal to its degrees of freedom or E($\chi 2$)=df. So, **if** the null hypothesis is **true**, $\chi 2/df \approx 1.0$. Therefore a $\chi 2$ value less than its df (or equivalently $\chi 2/df < 1$) is never statistically significant.

Technical note- Fisher's exact test alternative calculation of the chi-square test p value

Conventionally, the p values for the Z and χ^2 statistics are obtained by looking them up on the Gaussian distribution or the corresponding χ^2 distribution, which is derived from the Gaussian distribution. However, when the sample size is small and the expected frequencies are less than 5 in at least 20% of the cells, it can be shown that the central limit theorem approximation may not be accurate so the distribution of Z or χ^2 may not be Gaussian. So p values from the Gaussian or χ^2 tables are incorrect. In this case, the exact, correct p value can be computed based on the multinomial distribution (which we have not studied), although this computation is very difficult without a computer program. The algorithm for computing the exact p value was developed by RA Fisher so p values computed this was are said to be computed using "Fishers exact test". However, the purpose is still to compare frequencies and proportions as with the Z and chi-square tests. In principle, the Fisher procedure could always be used in place of looking up a p value on the chi-square distribution.

Chi-square goodness of fit test

Sometimes we wish to compare observed frequencies to those that would be expected (predicted) if the data follows a known distribution, such as the Poisson distribution or the Gaussian (Normal) distribution or some other theory or model. Such a comparison of observed data to expected results under the model is called a goodness-of-fit test.

Example: Comparison to a Poisson.

We observe n=100 persons and record the number of colds each had in a three month period

Number colds	number persons (o)	expected number (e)
0	39	39.9
1	37	36.7
2	17	16.9
3	7	5.2
4+	0	1.5

Under the Poisson distribution with mean=92/100, the mean in the data, we computed the expected (e) number of persons with 0, 1, 2, 3 and 4 or more colds. $e=100 (0.92^{y} e^{-0.92})/y!$

The chi-square statistic = $\sum (o-e)^2/e = 2.12$.

While the computation of the chi-square value is similar to the chisquare for comparing proportions, the degrees of freedom (df) are the number of categories minus one or 5-1=4 in this example. The p value here is p = 0.7145. We do not reject the null hypothesis that the data fits a Poisson distribution. In general, to show that the data fits the model, one must have a NON significant p value.

Goodness of fit Gregor Mendel pea hybrid (1865)

If round (R) is dominant over angular (a) 25% RR, 50% Ra, 25% aa so 75% round phenotype expected in hybrids

seed form - observed				seed form- expected				
plant	round	angular	total	pct round		round	angular	total
1	45	12	57	78.9%		42.75	14.25	57
2	27	8	35	77.1%		26.25	8.75	35
3	24	7	31	77.4%		23.25	7.75	31
4	19	10	29	65.5%		21.75	7.25	29
5	32	11	43	74.4%		32.25	10.75	43
6	26	6	32	81.3%		24.00	8.00	32
7	88	24	112	78.6%		84.00	28.00	112
8	22	10	32	68.8%		24.00	8.00	32
9	28	6	34	82.4%		25.50	8.50	34
10	25	7	32	78.1%		24.00	8.00	32
total	336	101	437	76.9%		327.75	109.25	437

Chi square = 5.297, df= 10-1=9chi square/df = 0.59p value = 0.8077

Data fits the genetic theory.