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 bivariate & multivariate 
continuous data- regression  
Ex: Riddle, J. of Perinatology 

(2006) 26, 556–561  
 
50th percentile for birth weight 
(BW) in g as a function of 
gestational age 

 

BW(g)=42exp(0.1155 gest age) 
Or 

 

Loge(BW)=3.74 + 0.1155 gest age  
 

In general:    
BW = A exp(B gest age),  

A & B change for different 
percentiles 
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Section VIIIa 
  

 Simple bivariate 
regression 
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 Statistics for bivariate continuous data – regression and correlation 
 
   Measures of association  
      correlation coefficient (r in sample,  in population) 
      slope (b in sample,  in population) 
 
   Measure of location  
      intercept (a or b0 in sample,  or 0 in population) 
 
  Measures of fit 
      Squared correlation (R2) 
      Residual SD (SDe in sample, e in population) 
_______________________________________________________________________________ 

  Statistics for Describing a Bivariate (two variable) Relationship between two continuous 
variables 

We first consider the simplest case where we relate a continuous measured variable X to another 
continuous measured variable Y where both X and Y are measured on the same persons.  
 
In the example below, X is age in years and Y is systolic blood pressure (SBP) in mm Hg for adult 
females. In examining the relationship between X and Y, the first step is to make a scatter plot (also 
called a scattergram).  
 
 Now it is often (but not always) the case, that there is a roughly linear relationship between X and 
Y.  That is, as X doubles, Y may double (or -Y may double).  By a linear relationship we mean a 
relationship of the form  
 
   Y = a + b X + error                      
 
That is, the relationship is expressed with an equation where a and b are constants estimating 
population values  and .  This equation says that, for every unit X increases, Y increases by an 
amount b.  When X is zero, Y is equal to a.  The constant b is called the slope or the rate, and the 
constant a is called the intercept.   
 
If the relationship between X and Y is (at least approximately) linear, then we can summarize the 
relationship by four statistics: 
   the slope,  b 
   the intercept, a  (sometimes denoted b0) 
   the (Pearson) correlation coefficient, r  or the squared correlation (R2) 
   the residual standard deviation denoted  Se or SDe  (also called the root mean square error) 
 
The correlation r and SDe, the residual SD, are defined below.  
 
By definition, r is defined as  
 
r =     (Y deviations from mean)(X deviations from mean) 
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                    (n-1) SDy SDx  
               _      _ 
  =     (Y - Y)(X - X) 
          (n-1) SDy SDx  
 
where the subscripted SDs refer to the standard deviations of y and x respectively. This correlation 
coefficient is called the Pearson correlation coefficient or the product moment correlation 
coefficient.  
 
If most of the XY products are positive,  r is positive and, on average, Y increases as X increases.   
If most of the XY products are negative,  r is negative and, on average, Y decreases as X increases.  
 
    Not surprisingly, r and b are related by the formula  
 
       b = r SDy/SDx   or    r = b SDx/SDy                                (r is a “slope” in SD units) 
 
Note that b and r have the same sign.  If r is zero, b is also zero. 
 
  How the slope and intercept are estimated (short version) 
    Definition of the residual standard deviation (SDe) 
 
For every X value, there is a corresponding Y value.  If we draw a straight lie through the scatter 
plot, for every X value there will also be a value on the line which we will denote Ŷ ("Y hat").  Ŷ is 
the predicted (not actually observed) value of Y based on the line. The residual error, denoted "e" is 
the difference between the observed and predicted (or "expected") Y values. 
                                        
  residual error = e = Y – Ŷ 
 
The slope, b and the intercept, a, are chosen such that the quantity  
                                   
RSS = residual sum of squares =   e2 =  (Y - Ŷ)2   
 
is minimized.  That is, a and b are chosen so that, on average, the line is as close to the observations 
as possible.  
 
When the slope and intercept are chosen this way, the average value of e (the average residual error) 
is zero and the standard deviation of the residual errors is given by  
SDe = RSS/(n-2)= SD of the residual errors, e = Root mean square error =RMSE 
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                           Data for the simple regression example: age vs SBP 
 

Age vs SBP in women 
predicted SBP (mmHg) = 81.5 + 1.22 age,       r=0.72, R2=0.515 

     
 X Y Predicted Y=Ŷ e = error 

patient age (yrs) SBP (mmHg) predicted SBP (mmHg) residual error=e (mmHg) 

1 22 131 108.42 22.58 
2 23 128 109.65 18.35 
3 24 116 110.87 5.13 
4 27 106 114.53 -8.53 
5 28 114 115.76 -1.76 
6 29 123 116.98 6.02 
7 30 117 118.20 -1.20 
8 32 122 120.64 1.36 
9 33 99 121.87 -22.87 
10 35 121 124.31 -3.31 
11 40 147 130.42 16.58 
12 41 139 131.64 7.36 
13 41 171 131.64 39.36 
14 46 137 137.75 -0.75 
15 47 111 138.97 -27.97 
16 48 115 140.20 -25.20 
17 49 133 141.42 -8.42 
18 49 128 141.42 -13.42 
19 50 183 142.64 40.36 
20 51 130 143.86 -13.86 
21 51 133 143.86 -10.86 
22 51 144 143.86 0.14 
23 52 128 145.08 -17.08 
24 54 105 147.53 -42.53 
25 56 145 149.97 -4.97 
26 57 141 151.19 -10.19 
27 58 153 152.42 0.58 
28 59 157 153.64 3.36 
29 63 155 158.53 -3.53 
30 67 176 163.41 12.59 
31 71 172 168.30 3.70 
32 77 178 175.63 2.37 
33 81 217 180.52 36.48 

      
mean 46.7 138.6 138.6 0.0 

SD 15.5 26.4 18.9 18.3 
 SDx SDy  SDe = Se=Root MSE 

 
                                           Mean error is always zero 
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  Regression Example:  age versus systolic blood pressure (SBP) 
 
In this example   SBP = 81.5 + 1.22 age + error  
 
For every year increase in age, SBP increases on average by 1.22 mm Hg/year 
 
Bivariate Fit of y=SBP (mmHg) By x=age (yrs)  (adult females) 

 

                                                                   
(Sample) Intercept = a = 81.5 mm Hg  (intercept sometimes denoted b0, not a) 
(Sample) Slope = b= 1.22 mm Hg / year 
 

(Sample) Residual error SD = SDe = Se = 18.6 mmHg 
  (Also called the RMSE = root mean square error) 
 
Sample squared correlation = R2 =  0.515 
Sample correlation = r = 0.515 = 0.718 
 

 Variable         SD 
     age            15.5 years 
    SBP           26.4 mm Hg 
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Linear Fit                                                                       JMP output 
   SBP = 81.516752 + 1.2224041 age 
 
Summary of Fit 

Rsquare=R2 0.515307 
RSquare Adj 0.499671 

Root Mean Square Error=SDe 18.63894 
Mean of Response=Y 138.6364 

Observations (or Sum Wgts)=n 33 
 
Lack Of Fit 

Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 27 10136.544 375.428 2.3717 
Pure Error 4 633.167 158.292 Prob > F 
Total Error 31 10769.710  0.2084 

                                       
  Reject linear assumption if this p is small  

 
 
Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 
Model 1 11449.926 11449.9 32.9580 
Error 31 10769.710 347.4 Prob > F 

C. Total 32 22219.636  <.0001 
                                                                    SDe

2 
 
Parameter Estimates                p values 

Term Estimate Std Error t Ratio Prob>|t|
Intercept 81.517 10.465 7.79 <.0001 
age (yrs) 1.222 0.2129 5.74 <.0001 

                                                    Slope = b 
                                                                                 P value for age vs SBP correlation 
 
    r = 0.5153 = 0.7178 

R2=51% of the 
variation in 

SBP is 
accounted for 

by age. 



 9

Slope , correlation & SDe – key facts 
 

* The slope b is the rate of change in Y for a unit change in X. It has 
units of y/x. The correlation (r) is dimensionless and is the change in Y 
in SD units for a one SD change in X.  SDe has units of Y. 
 
 When r =1.0 or  r = -1.0, SDe is zero (perfect fit)  
 
  The intercept, slope and correlation are not very meaningful when the relation between X and Y is 
systematically nonlinear (see below) 
 

 * Slope = correlation x (SDy/SDx) 
            b  = r (SDy/SDx)      1.22=0.7178(26.4/15.5) 
             
      where SDy is the SD of the y variable, SDx is the SD of the X variable. 
 

  *         r = b (SDx/SDy)     0.7178=1.22(15.5/26.4) 
 

   r = b SDx/ b2 SDx
2 + SDe

2 
 
where SDe is the residual error and SDx is the SD of the x variable 
 

 *  R2 is the proportion of the total (squared) 
variation in Y that is “accounted for” by X.  
 

    R2= r2 = (SDy
2– SDe

2)/SDy
2 = 1 - (SDe

2/SDy
2) 

 

                 SDy(1-r2) = SDe     26.4(1-0.5153)= (18.64) 
 
    If Y = Ŷ + e,   Var(Y)=Var(Ŷ+e)= Var(Ŷ) + Var(e) 
                   So,  Var(Ŷ) = Var(Y) – Var(e) = SDy

2 – SDe
2 

                  R2 = Var(Ŷ)/Var(Y) =  (SDy
2 – SDe

2)/ SDy
2 

 

* Under Gaussian theory, 95% of the errors are within 
 +/- 2 SDe of their corresponding predicted Y value.  
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Sums of Squares (SS) 
 

Most regression software also prints out a table such as the 
one below, the “summary analysis of variance table”.  
 
     Summary Analysis of Variance table 

Source DF Sum of Squares Mean Square F Ratio p value 
Model 1 11449.926 11449.9 32.9580 0.0001 
Error 31 10769.710 347.4   

C. Total 32 22219.636    
                                                                    SDe

2 
This table shows how much of the variation in the outcome Y 
(SBP in this example) is accounted for by the “model”, that is, 
the predictor X variable(s) and how much variation in Y is 
not accounted for, the “error” variation.   
 
For a given dataset, the SD of Y (SDy) and the variance of Y 
(=SDy

2) is fixed.   So the sum of squares (SS) for Y is defined 
as the sample size (minus 1) times the variance, is also fixed. 
The SS is the numerator of the variance formula and is a 
measure of how much Y varies.  
 
The table is shown below, for k predictor variables. (In our 
example above, k=1).  

 df Sum of Squares=SS Mean Square=MS=SS/df 
Model k       b2∑( x - x )2   (for k=1) b2∑( x - x )2/k           
Error n-k-1 ∑e

2 =(n-k-1)SDe
2 SDe

2 
Total n-1 ∑ ( y - y )2 =(n-1)SDy

2 SDy
2 

In the above, y  is the mean Y and x  is the mean x.  
 
The R2 value = Model SS /Total SS = 11450/22220=0.515. 
  F = Model SS/ Error SS, the corresonding p value tests that 
the true β=0. 
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 Confidence intervals and prediction intervals 
from regression models 
 

As previously studied, confidence intervals and prediction 
intervals are not the same.  
 

Example:  In our model: 
     Predicted SBP = 81.52 + 1.222 age          (SDe= 18.6 mm Hg) 
 

For a 50 year old, the predicted SBP is 81.5 + 1.22(50) = 
142.6 mm Hg = Ŷ.  
 

The standard error for this Ŷ= 142.6 is SE=3.3 mm Hg, so a 
95% confidence interval for the average SBP in a 50 year 
old is (136.0 mm Hg, 149.2 mm Hg). 
 
But, the individual standard deviation is 18.9 mm Hg 
(similar to SDe= 18.6 mm Hg). So a 95% prediction interval for 
individuals is (104.8 mm Hg, 180.4 mm Hg). 
 

The 142.6 is both the estimated mean for all women age 50 
and the predicted value for each individual age 50! 
 

The confidence interval (CI) indicates the uncertainty 
(assuming the model is correct) in estimating the 
population mean SBP for all women age 50 in the target 
population. The prediction interval (PI) indicates where the 
middle 95% of individual SBP values will fall for all 
women age 50 in the target population. The PI may be 
more clinically relevant as it gives the uncertainty in the 
prediction for one individual.  
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patient age 

(yrs) 
SBP 

(mmHg) 
Predicted SBP=Ŷ 

(mmHg) 
SE for Pred SBP 

(mmHg) 
SD for Pred SBP 

(mmHg) 

1 22 131 108.4 6.2 19.6 
2 23 128 109.6 6.0 19.6 
3 24 116 110.9 5.8 19.5 
4 27 106 114.5 5.3 19.4 
5 28 114 115.7 5.1 19.3 
6 29 123 117.0 5.0 19.3 
7 30 117 118.2 4.8 19.3 
8 32 122 120.6 4.5 19.2 
9 33 99 121.9 4.4 19.1 
10 35 121 124.3 4.1 19.1 
11 40 147 130.4 3.5 19.0 
12 41 139 131.6 3.5 19.0 
13 41 171 131.6 3.5 19.0 
14 46 137 137.7 3.2 18.9 
15 47 111 139.0 3.2 18.9 
16 48 115 140.2 3.3 18.9 
17 49 133 141.4 3.3 18.9 
18 49 128 141.4 3.3 18.9 
19 50 183 142.6 3.3 18.9 
20 51 130 143.9 3.4 18.9 
21 51 133 143.9 3.4 18.9 
22 51 144 143.9 3.4 18.9 
23 52 128 145.1 3.4 19.0 
24 54 105 147.5 3.6 19.0 
25 56 145 150.0 3.8 19.0 
26 57 141 151.2 3.9 19.0 
27 58 153 152.4 4.0 19.1 
28 59 157 153.6 4.2 19.1 
29 63 155 158.5 4.7 19.2 
30 67 176 163.4 5.4 19.4 
31 71 172 168.3 6.1 19.6 
32 77 178 175.6 7.2 20.0 
33 81 217 180.5 8.0 20.3 

 

For CI For PI 
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How big should R2 be? 
 

While R2 is the proportion of Ys variation 
accounted for by the Xs (in an observational 
study), there is no universal rule saying that R2 
must be at least 0.30 or 0.40 or 0.9.  How big R2 
“needs” to be can sometimes be determined by 
how small Se needs to be using  R2 ≈ 1 – (Se/Sy)

2  
 

  Example-Predicting SBP: 
The SBP  SD=26.4 mm Hg. From the model 
with age,  SDe=18.6 mm Hg. The 95% PI is Ŷ± 
37.2 mm Hg. Not very precise.   
 
 

Q-How large does R2 have to be for a 95% 
prediction interval width of about ±10 mm Hg? 
 

A-If the 95% PI is ±10 mm Hg wide,  2Se ≈ 10 
mm Hg (Gaussian theory).   So Se=5 mm Hg. 
 
  R2=1-(SDe/SDy)

2=  
 
So    R2 = 1-(5/26.4)2 = 1-0.036= 0.964=96.4% 
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     Pearson (r) vs Spearman (rs) correlation 
 
Pearson r – Assumes relationship between Y 
and X is linear except for noise.  
 “parametric” (inspired by bivariate normal 
model). Strongly affected by outliers.  
 
Spearman rs – Based on ranks of Y and X. 
Assume relation between Y and X is monotone 
(non increasing, non decreasing).  “Non 
parametric”. Less affected by outliers.  
 

 
 
  r =0.25,  rs = 0.48
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Limitations of Correlation and Linear Regression Statistics 
 
The slope (b), the intercept (a), the (Pearson) correlation coefficient (r) and the residual SDe are only 
useful when there is (at least approximately) a linear association between x and y.    
 
Often there are systematic relationships in nature that are not linear.  Quoting linear regression 
statistics (and not showing a picture) for these relationships can be misleading.  
 
Example - In biochemistry, there are definite, well know relations between y= receptor binding 
versus x= ligand concentration. However, this association is not linear and is not described well by 
correlations or slopes.   
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Pathological behavior - For all four datasets below 
 

Ŷ = 3 + 0.5 X,     r = 0.817,    SDe = 13.75,     n=11 
 

Would not know they are different if you only saw the statistics 
 

 
 
 
Weisberg, Applied Linear Regression, p 108
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Ecologic fallacy 

 
The figure below illustrates another situation where regression can be misleading if not applied 
carefully.  If one looks at the relationship between mean income and mean hours of job training in 
five different cities one might get the impression that there is a negative relationship between these 
two measures.  However, if one looks within any one city, one can see a positive relationship!  
Clearly, using city instead of person as the unit of analysis can completely change the impression 
one can get from the data.  
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Interpreting “correlation” in experiments 
 
While R2 always has the interpretation of the proportion of the sample variation in Y “accounted for” 
by the model, r, the correlation coefficient, is not always interpretable as a  measure of correlation.  
 
When both Y and X are observed without any restraint or sampling bias, then X and Y are truly 
“random” variables from a representative population sample and r can be unbiasedly interpreted as 
the estimated correlation coefficient. (Also assumes X and Y have an intrinsic linear relation). 
 
However, in many planned experiments, the range or values of X may be prespecified and therefore 
may not vary the same way as in the population. In an experiment, the X values may be restricted or 
fixed at certain values of interest and then Y measured at these X values (such as in a dose response 
experiment).  When X is fixed and not allowed to vary “naturally”, then r is no longer interpretable 
as a valid measure of correlation, even if the relation between Y and X is intrinsically linear.  
However, b, the estimate of   (the slope) will still be valid/unbiased since b only depends on the 
conditional distribution of Y given the Xs.  
 
Algebraically, since r = b SDx /b2 SDx

2 + SDe
2 , if the X values are “manipulated”, SDx is no 

longer correct (representative of the population SDx) so r is no longer correct.  In particular, if the X 
values are truncated, SDx is too small so r and R2 will be too small.  
 
                 R2, b and SDe when X is systematically changed 
 
Data                                     R2                        b                    SDe 
Complete data                   0.81                  0.90                  0.43 
 (“truth”) 
 
Truncated                            0.47                  1.03                  0.43 
(X < -1 SD deleted) 
 
center deleted                      0.91                   0.90                 0.45 
( -1 SD< X < 1 SD deleted) 
 
extremes deleted                 0.58                   0.92                  0.42        
(X < -1 SD deleted, X > 1 SD deleted) 
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Attenuation of regression coefficients 
 (estimated s) when there is error in X  

 
The usual regression models are forced to assume that the X values are measured without error. 
When the X values are in fact measured with (random) error, the resulting  estimates are too small. 
  They are “attenuated” toward the null (zero) value.  
 
     Negligible errors in X,  estimated  = 3.96   (true  is 4.0)  
X 
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   Y = 1.1490652 + 3.9591393 
 

RSquare 0.998825 
RSquare Adj 0.998734 

Root Mean Square Error 0.630241 
Mean of Response 32.82218 
Observations (n) 15 

 
 
Parameter Estimates 

Term Estimate Std Error t Ratio p value 
Intercept 1.1490652 0.342447 3.36 0.0052 

X 3.9591393 0.037664 105.12 <.0001 
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 Errors in X, estimated  value of 3.49 is too small  
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     Y = -2.131676 + 3.4865502 noisy X 
 

Rsquare 0.924914 
RSquare Adj 0.919138 

Root Mean Square Error 5.037825 
Mean of Response 32.82218 
Observations (n) 15 

 
Parameter Estimates 

Term Estimate Std Error t Ratio p value 
Intercept -2.131676 3.053135 -0.70 0.4974 
noisy X 3.4865502 0.27552 12.65 <.0001 

 
Any statistic that measures relationships including regression coefficients, correlation 
coefficients, risk ratios, odds ratios and mean differences can be attenuated in the 
presence of measurement noise.  Random “noise” tends to make the estimates closer 
to their null value.   
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          Checking for linearity – smoothing & splines 
 

Smoothing is a method for deciding if the relationship between Y and X is intrinsically linear (or 
monotone). Can suggest the proper transformation to make a linear relationship between Y and X.  

 
Basic idea: In a plot of Y vs X, also plot Ŷ vs X where 
 
                     Ŷi = ∑ Wni Yi       & ∑Wni=1, Wni>0. 
 
The “weights” Wni, are larger near Yi and smaller far from Yi.   
 
Smooth – Define a moving “window” of a given width centered around the ith data point. Fit a 
mean (moving average) or a linear or quadratic function in this window. The smoothed value is 
the predicted value (Ŷi) of the fitted function at i. Move the window over one point (to i+1) and 
repeat. Then connect the Ŷi values across the windows.  
 
Spline-  Break the X axis into equally spaced non overlapping windows.  Fit a polynomial 
(usually a quadratic or cubic) within each bin such that the “ends” all “match” (are piecewise 
continuous and their first derivative is also continuous) from window to adjacent window.  
.   
The size of the window controls the amount of smoothing.  The bigger the window, the greater 
the smoothing. Maximum smoothing occurs when there is only one window covering the range 
of the X data.  This usually produces a straight line.  While exactly how much smoothing to do is 
somewhat subjective,  the rule is to smooth until all the “small bumps” 
are gone, making a smooth curve. But one smooths no farther than 
this.  
 
     IGFBP By BMI 
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Underlying relation is not linear – not just because of random noise 
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   IGFBP By BMI with smoothing (PROC  LOESS) – monotone curve         
R-Square 0.416263 
Sum of Squares Error 4881719 
 

 
    IGFBP By BMI  - insufficient smoothing – not a monotone curve 
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R-Square 0.565795 
Sum of Squares Error 3631203 
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          IGFBP By BMI – over smoothing – almost always produces a straight line 
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R-Square 0.159773
Sum of Squares Error 7026708
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        ANDRO By BMI     not clear if underlying relationship is linear  
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         ANDRO By BMI  - can see that underlying relation here is linear 
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R-Square 0.156004 
Sum of Squares Error 17458751 
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Sec VIIIb- Multiple Regression -  Overview  
 

Multiple Regression in statistics is the science and art of creating an equation that relates an 
outcome Y, to one or more predictors, X1, X2, X3, .. Xk.   The predictors can be continuous variables 
such as age or weight or they can be discrete variables such as treatment or gender.  
In the case of “c” treatments, c-1 “dummy” X variables must be made. For example, if there are c=3 
treatment groups, A, B and C, where C might be the referent (or control) group, a dummy X variable 
is made for A vs C and another is made for B vs C.   The predictors can also be interactions among 
variables or non linear transformations of variables.     
 
Regression is a powerful tool for describing the multiple, simultaneous influences of many factors 
on Y. It is also can be very misleading if applied carelessly.  
 
There are many types of regression. One of the most important considerations is the nature of the 
outcome variable, Y.  
 
  Multiple linear regression 
 
If Y is continuous over a large range, it is modeled as a linear function of the Xs. This is called linear 
regression and is a model of the form  
 
       Y = a + b1 X1 + b2 X2 + b3 X3 + ... + bk Xk + e  = Ŷ + e  
 
where "e" is the residual error between the observed Y and the prediction (Ŷ).  In this and all other 
regression models, b1, b2, … bk are called regression coefficients but their interpretation is 
somewhat different for each type of regression.   In linear regression, bi is the average change in Y 
for a one unit change in X.   That is, bi is the rate of change in Y per X.  In all regression models, if 
the bi is positive, Y increases as X increases and if the bi is negative, Y decreases as X increases.  
 
  Multiple Logistic regression 
 
When Y is binary (coded 0 for negative and 1 for positive),  Y itself cannot be a linear function of 
the Xs. Instead, let P = mean Y.  P is the proportion of persons with a given set of X values 
(covariate pattern) who have Y=1. If Y is disease or no disease, P is the risk. We define the logit of P 
as  
          Logit(P)  =  ln( P/(1-P)).    “Logit” is short for log of the odds since P/(1-P) is the odds.  
 
In multiple logistic regression, the logit of P, not P, is a linear function of the Xs 
 
   Logit(P) = ln(P/(1-P))  = a + b1 X1 + b2 X2 + b3 X3 + ... + bk Xk 
 
There is no error term (“e”) in logistic regression.   
 
The above equation implies that the odds is given by  
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      odds=exp(a + b1 X1 + b2 X2 + b3 X3 + ... + bk Xk),         
 
           risk = P = odds/(odds+1) 
 
In logistic regression, each b is the change in the logit for a unit change in X. Therefore eb = exp(b) 
is the odds ratio for a unit change in X.   The odds ratio for a change of ΔX is exp(b ΔX).  
 
   Logit function  P versus logit(P)=ln[P/(1-P)] 

 
 
 
    Example - Predictors of in hospital infection  
 
Characteristic    Odds Ratio (95% CI)  p value  
  Incr APACHE score   1.15   (1.11-1.18)   <.001  
  Transfusion  (y/n)       4.15   (2.46-6.99)   <.001  
  Increasing age (yr)     1.03   (1.02-1.05)   <.001  
  Malignancy                 2.60   (1.62-4.17)   <.001  
  Max Temperature       0.70   (0.58-0.85)   <.001  
  Adm to treat>7 d        1.66   (1.05-2.61)    0.03  
  Female  (y/n)              1.32   (0.90-1.94)    0.16  
 
         *APACHE = Acute Physiology & Chronic Health Evaluation Score  

P vs logit
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  Multiple Poisson regression 
 
When Y is a positive integer that is zero or larger (0,1,2,3…), it is also not advisable to model Y as a 
linear function of the Xs.  Instead, it is better to model the log of Y as a linear function of the Xs.  So 
the multiple Poisson regression model is given by  
 
   ln(mean Y) = a + b1 X1 + b2 X2 + b3 X3 + ... + bk Xk 
 
This implies that          mean Y = exp(a + b1 X1 + b2 X2 + b3 X3 + ... + bk Xk) 
 
In this model, Y cannot be negative.    
 
In the Poisson model, the regression coefficient bi is the rate of change in ln(Y) per unit change in X. 
Also, 100 bi  is the percent change in  Y per one unit change in X.  For example, if the regression 
coefficient for age in years is b=0.057, then Y changes 5.7% per year.  
 
  Multiple proportional hazards regression (Cox model) for time dependent events  
 
For time dependent outcomes (ie time to death), we often with to model the hazard, h, instead of the 
mean Y. The hazard is the event rate per unit time (ie for death, it is the mortality rate).  Since h > 0, 
we model the log of the hazard as a linear function of the Xs (similar to Poisson regression)  
 
   ln(h) = a + b1 X1 + b2 X2 + b3 X3 + ... + bk Xk 
 
so h = exp(a + b1 X1 + b2 X2 + b3 X3 + ... + bk Xk) 
 
If ho=exp(a) is the ‘baseline’ hazard, (that is, a=log(h0)) the hazard ratio is 
 
HR = h/h0 = exp(b1 X1 + b2 X2 + b3 X3 + ... + bk Xk)              no ‘a’.  
 
If S0(t) is the ‘baseline’ Survival curve (survival function) corresponding to the baseline hazard, then 
the survival curve for particular values of  X1, X2, … Xk is given by 
 
     S(t)  = S0(t)

HR   where HR is first computed by plugging the Xs into the above equation.  
 
In this model, exp(bi) is the hazard rate ratio for a unit change in Xi.  
.  
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                 Example:  Busuttil et. a.  2005  - Annals of Surgery • Volume 241, Number 6, June 

 
 

Donor age HR 95% CI p value 

1-18 1.00 (ref) -- -- 

18-32 1.23 0.88-1.72 0.20 

32-48 1.40 1.02-1.92 0.03 

48-55 1.51 1.02-2.24 0.04 

55-60 2.29 1.48-3.55 < 0.001 

60+ 1.61 1.10-2.37 0.01 
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  Summary – regression coefficient interpretations 

 
                      
                      Multiple linear regression 

 
Linear regression is where a continuous Y is modeled by  
 
     Y = a + b1 X1 + b2 X2 + b3 X3 + ... + bk Xk + e  
 
where "e" is the residual error between the observed Y and the prediction based on the Xs.  
 
In this model, the ith regression coefficient, bi, is the average rate of (assumed linear) change in the 
predicted Y for a unit change in the ith predictor, Xi, given that all of the other covariates are held 
constant.  
 
As an example, consider predictors of Y=Bilirubin (mg/dl) in liver transplant candidates. Two 
predictors are X1=Prothombin time (PT in seconds) and X2=ALT (alanine aminotransferase in 
U/L).  
 
A multiple regression equation (on the log scale) is  
 

Outcome (Y) Regression interpretation 

continuous Linear b is the average change in Y per one unit 
increase in X, the rate of change 

Binary 
(P=proportion) 

Logistic exp(b)=eb=odds ratio (OR) for a one unit 
increase in X 

Low Positive 
integers 

(0,1,2,3..) 

Poisson exp(b)= mean ratio (MR) for a one unit 
increase in X 

Hazard rate 
(h=events/time) 

Cox exp(b)=hazard rate ratio (HR) for a one unit 
increase in X 
S(t) = S0(t)

HR 
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        Ŷ = (predicted) log Bilirubin = -3.96 +  3.47 log PT + 0.21 log ALT  
 
This equation says that, holding the (linear) influence of log ALT constant, for every 1 log second 
increase in PT, there is an average 3.47 log mg/dl increase in log Bilirubin. Holding log PT constant, 
there is an average 0.21 log mg/dl increase in log Bilirubin for a 1 log U/L increase in log ALT.  
 
The correlation between the observed log Bilirubin (Y) and the predicted log Bilirubin (Ŷ) is  
r = 0.448= 0.67.  If SDy is the SD of log Bilirubin ignoring log PT and log ALT and SDe is the SD 
of the residual errors (e=Y - Ŷ), as before, 
 

SDe
2 = SDy

2(1- r2) or r2 = (SDy
2 – SDe

2)/SDy
2. 

 
That is, r2 is the amount that the variation (variance) in Y is reduced by knowledge of the Xs.  In 
this example, since r2 = 0.448.  We say that X1 and X2 (log PT, log ALT) "account for" 45% of the 
observed variation in log Bilirubin, leaving 1-r2 = 55% not accounted for. SDe

2 is 55% as big as 
SDy

2.  So in this example, much of the observed variation in log Bilirubin is still not accounted for.   
Response Log Bilirubin=y                                 JMP output 
 
Summary of Fit 
RSquare 0.447812 
RSquare Adj 0.44477 
Root Mean Square Error 0.358133 
Mean of Response 0.438745 
Observations (or Sum Wgts) 366 
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 
Model 2 37.757715 18.8789 147.1926 
Error 363 46.558206 0.1283 Prob > F 

C. Total 365 84.315922  <.0001 
 
Lack Of Fit 

Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 354 43.888595 0.123979 0.4180 
Pure Error 9 2.669612 0.296624 Prob > F 
Total Error 363 46.558206  0.9878 

 
Parameter Estimates 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept -3.960849 0.257399 -15.39 <.0001 
log PT 3.4714393 0.214307 16.20 <.0001 

log ALT 0.210873 0.05515 3.82 0.0002 
 

SDe

Fit not 
rejected 
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   Residual by Predicted Plot     
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              Residual error plot  
 

 
When the model is valid, this plot should look 
like a circular cloud if the errors have 
constant variance. The example above is a “good” 
result.  
 

Example of a "good" residual error histogram 
 
Distributions 
Residual Log Bilirubin     (residual errors = e)  

-1 -0.5 0 .5 1 1.5
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Normal quantile plot 
Should be (at least approximately) a straight line if 

the residual error data is Gaussian 
 
     Residual Log Bilirubin 
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  Interpretation of multiple regression coefficients (cont.)  
 
The multiple regression will not in general be the same as the individual regression coefficient 
for each variable one at a time, even though the same Y is being modeled.  
 
variable        Simple (one Y, one X) regression     simultaneous multiple regression (b1X1+b2X2) 
Log PT                           3.560                                                   3.470 
Log ALT                        0.310                                                    0.211 
 
      Log Bilirubin = - 3.70 + 3.56 log PT,     R2 = 0.425             
  
      Log Bilirubin =  -.105 + 0.310 log ALT,     R2 = 0.049 
 
 
   Log Bilirubin = -3.96 + 3.47 log PT + 0.211 log ALT ,     R2 = 0.448 
 

Rare special case – orthogonality 
 
However, if all of the Xs have zero correlation with each other (but not with Y), 
then the simple “bivariate” regression coefficients for the regression of Y on each 
Xj (ignoring all the other Xs) will be the same as the multiple regression 
coefficients for Y regressed on all of the Xs. (Y regressed on X1, X2, …  Xk-1). 
When all of the Xs are uncorrelated with each other they are said to be orthogonal. 
 This usually only happens in designed experiments, not in observational studies.  
(Collinearity is the “opposite” when the X variables are strongly correlated with 
each other).  
 
Since we usually do NOT have orthogonality, evaluating a set of k-1 variables one 
at a time will NOT generally give the same results as evaluating all k-1 variables 
simultaneously in a multiple regression model.  

 
While multiple regression is useful for simultaneously evaluating all the factors 
that affect an outcome, and so can be an important tool for controlling for 
confounding, artifacts/bias can arise if two assumptions are not verified. 
 
1.  When an X is continuous or interval, the relation between X and Y is assumed 
linear. Sometimes this is true on a transformed scale.  If this is not true on any 
scale, then X must be polychotomized into groups.  
 

The simple & 
multple 

regression 
coeffs for 
log PT don’t 

match
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2.  By default, the effects of the X’s are assumed additive.  This can be checked by 
adding interaction terms (ie X3 = X1  x   X2). Sometimes interactions are very 
important.   
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3   Also, in linear regression, prefer residual errors to have a Gaussian distribution 
with a constant variance that is independent of Y.  But additivity and linearity are 
more important since lack of additivity and linearity lead to bias.  
 
       Correlation of X1=log PT with X2=log ALT 
 
 
    log PT  By log ALT 
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  r12  = 0.111,      R2 = 0.0123 
 
Since the correlation between log PT (X1) and log ALT (X2) is low, the simple 
versus multiple regression results are similar.  
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 Interaction effects (& subgroups)- definition 
 
The model         Y = 0 + 1X1  + 2X2  +   
 
implies that change in Y due to X1 (=1) is the 
same (constant) for all values of X2.   
 
In the model  
        Y = 0 + 1X1 + 2X2 + 3 X1X2 +   
 
the 3 term is an interaction term. Change in Y 
for a unit change in X1 is (1+3X2) and is 
therefore not constant.  
 

Positive 3 is often termed a “synergism” 
 

Negative 3 is often termed an “antagonism” 
 

How to implement in software?  Make new 
variable  W = X1X2.  
  
This is a way to test for additivity.  
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Interaction effects example 
  Response:  Y= log HOMA IR   (MESA study, output from JMP software) 
 
Actual by Predicted Plot 
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P<.0001 RSq=0.28 RMSE=0.6231
 

 

Summary of Fit 
RSquare 0.28044

RSquare Adj 0.280122
Root Mean Square Error 0.623101

Mean of Response 0.395153
Observations (n) 6782

 

Parameter Estimates 
Term Estimate Std Error t Ratio p value

Intercept -1.388058 0.049285 -28.16 <.0001
gender -0.668769 0.085421 -7.83 <.0001

BMI 0.0610655 0.001675 36.45 <.0001
gender*BMI 0.0279925 0.002986 9.38 <.0001

 
 

Predicted log HOMA IR =   -1.39 – 0.669 gender + 0.061 BMI  + 0.028 gender * BMI  
 
     (gender is coded 0 for female  and 1 for male)  
 

Residual by Predicted Plot                                     
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  Gender x BMI interaction- non additivity 
 

log e HOMA IR
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Hierarchially well formulated (HWF) regression models 
 
HWF Rule – To correctly evaluate the X1*X2 interaction, must also have X1 and X2 in the model. 
In general, one must include the lower order terms in order to correctly evaluate the higher order 
terms.  
 
  Non HWF:    Model: chol = a0 + a1 smoke x age  
 
If model is not HWF, significance of interaction depends on coding 

(bad!) 
 
0, 1 (dummy) coding:   smoke=0 or 1,  smokeage = smoke x age  
 
Variable  DF      Estimate     std error     t      p value 
INTERCEP   1    156.863323    3.99284362   39.286    0.0001 
SMOKEAGE   1      0.360968    0.18161802    1.988    0.0567   
 
----------------------------------------------------------------- 
 
-1, 1 (effect) coding:   smoke=-1 or 1,  smokeage = smoke x age   
 
Variable  DF      Estimate     std error      t    p value 
INTERCEP   1    162.277848    3.10164240  52.320    0.0001 
SMOKEAGE   1      0.054653    0.09975929   0.548    0.5881 
 
  p value for ‘smokeage’ has changed from 0.0567 to 0.5881  
 
 
HWF:Model: chol =b0 + b1 smoke + b2 age +  b3 smoke x age  
 For HWF, significance is the same regardless of coding 
 
0, 1 (dummy) coding: smoke=0 or 1,  smokeage = smoke x age       
             
 
Variable  DF      Estimate     std error       t      p value 
INTERCEP   1    100.220801    1.10981217    90.304     0.0001* 
SMOKE      1      3.812141    1.56951142     2.429     0.0224 
AGE        1      2.009533    0.03569531    56.297     0.0001* 
SMOKEAGE   1     -0.009001    0.05048079    -0.178     0.8599  
 
-1, 1 (effect) coding:  smoke=-1 or 1, smokeage =smoke x age     
        
 
Variable  DF      Estimate     std error       t      p value 
INTERCEP   1    102.126872    0.78475571    130.138    0.0001** 
SMOKE      1      1.906070    0.78475571      2.429    0.0224 
AGE        1      2.005033    0.02524039     79.437    0.0001** 
SMOKEAGE   1     -0.004501    0.02524039     -0.178    0.8599  
              *Testing in non smokers,    ** testing overall  
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 Non linear regression 
 

The model  
  Log(Bilirubin)= -3.96 + 3.47 log(PT) + 0.211 log(ALT) 
 

is a non linear model in terms of PT and ALT but is a 
linear model in terms of log PT, log ALT and the 
regression coefficients b0=-3.96, b1=3.47 and b2=0.211.  
 

We can still use linear regression to fit this model by 
making new variables X1=log PT, X2=log ALT. Model is 
linear in the coefficients b0, b1 and b2. 
 

Consider a model of the form:  Ŷ= Drug conc = b1 10 b2 x   
 

This is nonlinear in b2 but can be made linear with a 
transformation. ( log10(conc)=log10(b1) + b2 x ) 
 
What about:     Drug conc = b0+ b1 10 b2 x  
 
This model is non linear in b2 and can’t be transformed. 
It requires non linear regression software to estimate b0, 
b1 and b2, giving “diagnostics” (R2, SDe) that are the same 
as in linear regression. Main difference from the usual 
linear regression software is one needs a starting “guess” 
for the values b0, b1 and b2 in order to run the non linear 
analysis.  
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Example: Compartmental drug models 

Model of how drug (or any chemical) is metabolized by an organism.  

            Y1=conc in serum,   Y2=conc in organ,    x=time 

 

 

 

d (Y1)/dx = -b1 Y1 

d (Y2)/dx = b1Y1 - b2Y2 

       b1 > b2 > 0 

solutions: 

     Y1 = const e-b1 x 

     Y2 = (b1/(b1-b2))  [e
-b2x - e-b1x]   <-fit model 

Y2 takes on a maximum value when 

  x = ln(b1/b2)/[b1-b2] 

Y2 is zero when x=0 or x is very large 

The constants b1 and b2 are rates.  They are in 
units of  1/x (i.e  1/time). 

Y1 
serum 

Y2
organ 
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If we can estimate b1 and b2 we can then 
compute other important pharmacokinetic 
parameters such as the mean residence time, the 
peak concentration, the time of the peak 
concentration and the area under the 
concentration curve after some (relatively) long 
time such as 24 hours. This can be important if 
we wish to be sure we are giving an adequate 
(therapeutic) and non toxic dose.  

 
In this example 
 

Ŷ= [0.0967/(0.0967-0.0506)]*[exp(-0.0506*t)-exp(-0.0967*t)] 
 

      at peak, t = 14 and Ŷ =0.49  conc units  
 
conc
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 Residual diagnostics and “model criticism” 
 
Assumptions of linear regression: 
 
1. Linear relation between Y and each X except 
for random “noise” (but can transform X).  
 
2.  Effect of each X is additive (but can make 
interaction terms)  
 
3.  Errors (e) have constant variance and come 
from a Gaussian distribution 
 
4. All observations from the same population 
 
5.  All observations independent (usually ok) 
 
A plot of  Ŷ versus e, called a residual error 
(diagnostic) plot, can help verify if these 
assumptions are met. 
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         Residual diagnostic plot – good plot 
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Residual diagnostic plots – “bad” plots 
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Regression model diagnostics 
 

Residual error plots 
 

Problem – Influential case(s) / "outliers" 
 
Solution – If there are only a few, find them (on the residual error plot) 
and remove them. Determine why they are different. They often belong 
to a different population (ie children, not adults).  
 
Problem – Curvilinear trend in error  
 
Solution – Add "non linear terms" to model equation.  Most common 
are squared terms (ie Age2 as well as age), log terms and antilog (exp) 
terms.  
 
Problem – Non constant error (e) variance – Heteroscedasity 
 
Solution –Find out how the variance changes as a function of the 
predicted Y, Ŷ.  Create "weights" that are inversely proportional to the 
variance.  
 
Most common example:  SDe increases as Ŷ increases.  So variance of e 
increases as Ŷ2 increases.  Make weight = 1/(Ŷ2). 
 
When SDe is not a constant, but depends on Ŷ, if the weighting is not 
done, the prediction intervals in particular based on a constant SDe 
may be very misleading!  
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 Adjusting means - simple case (ANCOVA) 
 

The point X, Y is always on the regr. line  

For each group, the equation   Y = b0 + b1 X  
can be rewritten 
  Y = Y + b1 (X - X)       i.e. b0 = Y - b1 X 
     
Let Xg, Yg be the means in the gth group 
Let X be the overall mean (the mean of the 
means) 

Where to adjust - adjust at the overall mean 

The adjusted Y mean is given by  
  Yg-adj = Yg + b1 (X - Xg)  
 
Get by plugging overall mean into regr eqn.  

Assumptions: 

The slope (b) must be the same in all groups!   
(parallelism)  

 Usually, we also use the Se pooled from all 
groups.  
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Example: Meditation and 
change in percent body fat 
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Example: 
Meditation and change in percent body fat 

 

Two groups of overweight persons chose a meditation 
program or a “sham” (lectures) as part of a weight loss 

effort. They were NOT randomized.   
 

Change in percent body fat by treatment group (mediation or sham) 
over three months 

 
                                      Unadjusted Means  

Level n 
Mean pct body 

 fat change 
SEM

Mean dietary fat 
(gm) 

1-meditate 439 -7.51% 0.47% 32.7 g 
2-sham 704 1.34% 0.35% 67.1 g 

 
   Unadjusted Mean difference  (sham minus meditation) = 8.85% 
   SE of the difference = SEdiff =  √0.4722 + 0.3532 = 0.586% 
 
        t  = mean diff/SEdiff =  8.85% / 0.586% = 15.1,   p < 0.0001 
 
Overall unweighted mean dietary fat = 49.9g  
 
“ Regression” – Y=change in percent body fat vs X=“sham” 
      (variable “sham”=0 for meditation or “sham”=1  for sham) 
 

RSquare 0.168 
Root Mean Square Error 9.57 

Mean of Response -2.06 
Observations 1143 

 
Parameter Estimates 

Term Estimate Std Error t Ratio p value 
Intercept -7.51 0.457 -16.43 <.0001 

Sham 8.85 0.582 15.20 <.0001 
  Chg in pct body fat = -7.51% + 8.85% sham.      
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Regression controlling for dietary fat 
and computing adjusted means 

Y=change in percent body fat versus X1=sham, X2=dietary fat 
 

RSquare 0.366 
Root Mean Square Error 8.358 

Mean of Response -2.06 
Observations =n 1143 

 
Parameter Estimates 

Term Estimate Std Error t Ratio p value 
Intercept -14.47 0.543 -26.64 <.0001 

Sham 1.51 0.558 2.71 0.007 
Diet fat 0.213 0.0113 18.88 <.0001 

Ŷ=Chg in pct body fat =-14.5 + 1.51 sham + 0.213 dietary fat 
 

Adjusted means 
   Meditation:   -14.5 + 1.51 (0) + 0.213 (49.9) = -3.84% 
   Sham:            -14.5 + 1.51 (1) + 0.213 (49.9) = -2.33% 
 

  Overall:          -14.5 + 1.51 (0.5) + 0.213 (49.9) = -3.09% 
 

    Summary  
Group Dietary 

fat 
Unadjusted mean 

body fat chg 
Adjusted mean 
body fat chg* 

1-
meditate 

32.7 g -7.51% -3.84% 

2-sham 67.1 g 1.34% -2.33% 
Overall 49.9 g -3.09% -3.09% 

differenc
e 

34.4 g 8.85% 1.51% 

p value < 0.01 < 0.0001 0.007 
   * adjusted to overall mean dietary fat (X) of 49.9 gm  
 


