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Section IV 
 

IV- Sampling distributions, confidence intervals and hypothesis testing 
 

                      Sampling distributions and the Central Limit Theorem 
 

For all but very small samples, sample means and other summary statistics (medians, 
SDs, proportions, odds ratios, risk ratios,correlation coefficients,…) follow the Gaussian 
(“normal”) distribution from study to study.  That is, from repeated sampling from the 
same target population, the distribution of the sample summary statistic tends toward the 
bell shaped Gaussian with the mean centered on the true population value.  This fact is 
called the central limit theorem.  
                                                                   
The simplest example is the sample mean,  .   If individual measurements Y have mean 
 and standard deviation , then one can show that the “sampling” distribution of  is 
Gaussian with mean  and SD equal to /n.   This is true for    no matter what 
distribution Y has.  The quantity /n is called the standard error (SE) of , to 
distinguish it from the standard deviation (SD) of Y.  (Don’t get those two mixed up!). 
Note that the SE, (but not the SD) depends on n, the sample size, and the SE gets smaller 
as n increases.  
 
The standard error indicates how much a sample statistic varies from sample to sample 
around the true population value. It is not the same as an SD which indicates how much 
one person’s value varies  from person to person.  
 
Central limit theorem demonstration  - SD vs SE 
 
Consider a population of patients recovering from disease whose recovery level, Y, is 
rated on a four point scale: 1=poor, 2=fair, 3=good or 4=excellent. In this example, we 
assume that the four points of the “Y” recovery scale are evenly spaced. In the population 
of all patients, assume we know that the distribution of Y is 25% 1, 25% 2, 25% 3 and 
25% 4. Therefore, the population mean is μ=2.5 and the population SD is σ =1.12.  The 
population distribution of Y is NOT Gaussian.   
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Now imagine taking a sample from this population of size n=4 patients. Possible samples 
are 3,1,2,2, ..     2,4,3,1  etc..  The sample mean of the four sample data values ranges 
from a mean value of 1, when the sample is 1,1,1,1 to a mean of 4 when the sample is 
4,4,4,4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     Distribution of the sample means – sampling distribution 
  

                                     mean  = 2.5, SD = 0.56,  n=4      
 
The histogram above shows the distribution of the sample means (a summary statistic) 
from all possible samples that could be taken from this population. This distribution is 
called the sampling distribution (of sample means, in this case).  Not surprisingly, the 
mean of all the sample means from all possible samples (the mean of the sampling 
distribution) is also μ = 2.5. This does not imply that every sample has mean 2.5, only the 
mean of all possible sample means is 2.5. That is, on average, the sample mean and the 
population mean, μ, are the same.  The SD of the sampling distribution is 0.56. This SD 
is not zero since not all samples have the same mean.  We will call the standard deviation 
of the sampling distribution the standard error (SE), to distinguish this from the SD of 
the original population values.  So 0.56 is the standard error.   
 
Interestingly, the SE is equal to the SD of the Ys divided by √n.  
 
                 SE   =    SD/√n                 the square root  n law  
 
In this example, n=4, √4=2.   So 1.12 / √n = 1.12/2 = 0.56.  
 
That is, as the sample size (n) gets larger, the “spread” of the sampling distribution (as 
measured by the SE) is narrower and the sample results cluster more closely around the 
true population value, μ.  While the SE gets smaller as n increase, the SD does not 
change systematically.  
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The SD is a measure of the variation of Y from patient to patient. The SE, in contrast, is 
the measure of variation of the sample statistic from sample to sample. That is, the SE is 
a measure of how precisely the sample statistic estimates the true population parameter. 
 
Statisticians have shown that, even if the patient measurements Y do not have a Gaussian 
distribution, summary sample statistics, such as sample means, have a sampling 
distribution that is usually well approximated by a Gaussian distribution whose mean is 
the same as the population parameter being estimated and whose standard deviation is 
equal to the standard error.  This approximation gets better as n gets larger.  Of course, 
this result is only true if all of the samples are taken at random from the same population. 
This result is called the Central Limit Theorem.   A rule of thumb is that the statistic 
(such as the mean) will almost always follow the Gaussian distribution if n is at least 
30. (If n is less than 30 and Y is not Gaussian, may need non parametric methods) 
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Meta – Analysis (part of a systematic review) 
 
The Central Limit Theorem can often be observed directly when looking at the effect of 
the same treatment comparison replicated across many studies (ie many samples) when 
all the studies were carried out on the same type of population and the treatment effect is 
measured with the same statistic.  
 
A funnel plot is a plot of the treatment effect (here the mean difference) versus the SE or 
versus n.  As n, the sample size, gets larger, the statistic gets closer to the true population 
value.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Publication bias - This also helps explain why some studies are not well reproduced. If, 
for example, the sample mean difference follows a normal distribution and the true value 
is “3”, a study that reports a larger sample effect (“4”) is more likely to be published.  

  
 

funnel plot - true difference is δ= 5
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            Resampling – the “Bootstrap”  

While one does not repeatedly sample from the same population, (that is, one only carries 
out the study once), a “simulation” of repeated sampling from the population can be 
obtained by repeatedly sampling from the sample with replacement & computing the 
statistic from each resample, creating an “estimated” sampling distribution.   The SD of 
the statistics across all the “resamples” is an estimate of the standard error (SE)  for the 
statistic.   

                                
 Confidence intervals 
 
We can use this Gaussian distribution property of sample means, sample mean 
differences or any sample statistic to form a confidence interval for the true underlying 
population parameter in the population from which the sample is taken.   That is, we can 
use this Gaussian property to make formal generalizations (inferences) about what the 
entire population is like “in general” based on only a (hopefully representative) sample. 
In medicine, we need to know about the overall properties of  people and treatments in 
general (ie. in the population), not just in the one particular sample that was examined in 
a particular study.   
 
Using Gaussian theory, a confidence interval is usually computed as  
 
      Sample Statistic  +/- Ztabled  SE 
 
where “sample statistic” is any summary statistic such as a mean difference or  a 
proportion. Ztabled is a specifically chosen percentile from the Gaussian table and SE is the 
standard error that corresponds to the summary statistic. The formula for the SE is 
different for different statistics and can be complicated.  
 
The value of Ztabled determines the level of confidence. Most commonly, for a 95% 
confidence interval, the 97.5th Gaussian percentile, Z=1.96, is chosen (so there is 2.5% in 
each tail). For a 90% confidence interval, the 95th Gaussian percentile is needed (5% in 
each tail).  For an 80% confidence interval, the 90th percentile is needed etc.  
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Mean differences and their SE - As a simple extension,  the mean difference  
 also has a Gaussian distribution.  If the measurements Y1 have mean 1 and 

SD 1 and Y2 have mean 2 and SD 2, then 
_ 
Y1  has mean 1 and SE = 1/ n1 = SE1 
_ 
Y2 has mean 2 and SE  = 2/n2 = SE2 
       _ 
and d has mean =1-2 and                                                        SEd                          SE2 
  SE = [1

2/n1 + 2
2/n2] = SEd        

 
Note that SEd = SE1

2 + SE2
2 

                                                                                                               SE1 
                                 _ 
The sample statistic d has a Gaussian distribution centered at the population mean 
difference  even if Y1 and Y2  (the individual’s observations) are not Gaussian! 
 
SE and confidence interval for a proportion  
  For a proportion P, the SE is sqrt[P(1-P)/n].  The approximate confidence interval is 
given by  P   +/-  Ztabled SE where Z is the Gaussian percentile (ie Z=1.96 for 95% 
confidence).  
 
Example: IOP – HBA1c change in diabetics with baseline HBA1c > 7.5% 
   (Pratley et. al. Lancet, 2010, 375, 1447-56)  
 
  Statistics for  HBA1c change from baseline to 26 weeks after treatment 
     
     Treatment       n      Mean change    SD      SEM 
     Liraglutide   225          -1.24           0.99    0.066   
     Sitaglipin     219          -0.90           0.98    0.066 
                                _ 
  Mean difference = d = 0.34%,    SEd  = 0.0662 + 0.0662    =   0.093% 
 
  For 95% confidence, use 97.5th percentile 
Z = 1.96    (if use t dist,  df= 225+219-2=442 , t=1.97 instead of Z=1.96)  
   
   95% Confidence interval for true mean difference in mean changes is  
 
   0.34% +/-  1.96 (0.093%) or  0.34 +/- 0.182 or (0.16% , 0.52%) 
 
We observed a mean difference of 0.34% favoring  Liraglutide in this study. The 
confidence interval implies that the true population mean difference is at least 0.16% 
favoring Liraglutide and might be as large as 0.52%  favoring Liraglutide .  Note that a 
mean difference of zero (no mean difference) is not included in this confidence interval.  
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Technical comment: t vs Z distribution – When computing the standard error (SE) for means or mean 
differences, we only have the sample standard deviation (S), not the population standard deviation ().  
Technically, we should only be using Gaussian Z percentiles when the SE is computed from . Fortunately, 
since we must use S in practice ( is unknown), a statistician named Gosset determined how to “correct” 
the Gaussian percentiles in order to account for using S in place of .   The corrected percentiles are called 
“t” percentiles instead of Z percentiles and the tables for them are tables of the “t” distribution.  The “t” 
percentiles depend on the sample size (via the “degrees of freedom = sample size-num parameters”) and are 
a somewhat larger than the corresponding Z percentile. So confidence intervals based on t are somewhat 
larger than those based on Z, accounting for the use of S instead of the population .  In this example, 
t=2.08 instead of Z=1.96 so the 95% confidence interval becomes 1.5 +/- 2.08 (0.70) or (0.044 mmHg, 2.96 
mmHg). 
 
Hypothesis testing 
 
A very common approach used in the biomedical literature when making formal 
comparisons is so-called “hypothesis testing”, a possibly misleading term.  In the case of  
comparing outcomes between two groups (i.e comparing the outcomes of two medical 
treatments) the idea behind hypothesis testing is to make a “null” hypothesis assumption 
that, in truth, there is no (average) difference between the outcomes in the two groups in 
general (i.e. in the underlying population).  This is equivalent to saying that the mean 
outcome difference between the two treatments is zero in the population.   Under this 
“null” assumption, we then compute how likely or probable is it that we would get the 
observed mean difference that we actually observed in our sample or a difference more 
extreme. This probability is called the p value.  If the null hypothesis is really true (mean 
difference is zero in the population), then the mean difference in our sample (or any 
sample from this population) should usually be small and its corresponding p value 
should be large.  If the null hypothesis is not true, and one treatment really is better than 
the other in general, then the mean difference in our sample should be large and its 
corresponding p value should be small.  If the p value is small enough, we conclude that 
the “null” assumption (no true mean difference in the underlying population) is no longer 
tenable and we “reject” the null hypothesis, thus proving (by contradiction) that one 
treatment is better, on average, than the other, in general.  
 
This is a very convoluted approach to data analysis since it is not direct proof but proof 
by contradiction.  
 
Example:  HBA1c data (same data as in confidence interval example above). 
                          _ 
   We know that d, the mean difference, has a Gaussian distribution with standard error 
given by SEd = SE1

2 + SE2
2.   For the HBA1c data, d = 0.34%, favoring Liraglutide, and 

the corresponding SEd = 0.093%.  
                                           _ 
Under the null hypothesis, d should come from a population where the mean differences 
=0.  (=1-2)  Since 0.093% is the SE for d,  the d we observed, is, under the null 
hypothesis 
                 _ 
    Zobs =  (d - )/ SE =  (0.34 – 0) / 0.093 = 3.82    - standard errors from =zero.  
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That is, our observed mean difference of 0.34% HBA1c units is 3.82 SEs from the null 
value of zero.  
                                                                                                           
According to the Gaussian table, the proportion of samples with an observed Z of 3.82 or 
greater under the null hypothesis is 0.00008 or 0.008%.  The value 0.00008 is the one 
sided p value.  By definition, the two sided p value is the probability of having an 
observed Z (Zobs) larger than 3.82 or less than –3.82. This two sided p value is 2 x 
0.00008 = 0.00016. 
  
The general convention is to report two sided p values.  P values are assumed to be two 
sided if they are not labeled as one sided or two sided.  
 
Since the p value is small, we “reject” the null hypothesis in this example.  That is, we 
conclude that this observed 0.34% mean difference in our study (or a mean difference 
more extreme) would only have a very small chance of being observed  if there was no 
true treatment difference in the population.  Therefore, by contradiction, the true mean 
difference can’t be zero and the population mean for Liraglutide must be better than the 
population mean for Sitaglipin.  Traditionally, we reject null hypotheses if the two sided 
p value is less than =0.05 or the one sided p value is less than /2=0.025.  The 
“criterion” p value that is the rejection standard (ie. the 0.05) is called the alpha level.  If 
 is the two sided alpha level, /2 is the corresponding one sided alpha level.  The value 
 is the probability that we have made a “false positive” or “type I” mistake by rejecting 
the null when the null is true (ie saying there is a real difference when there really isn’t 
one).   Since this is usually a bad mistake to make, the value of  is usually kept small.  
Note that the p value comes from and is a function of the data. The alpha level criterion is 
set in advance by the investigator.  
 
Non inferiority (Equivalence) hypothesis testing    
 
Say that the goal of our study was not to prove that Liraglutin (treatment A) was better 
than Sitaglipin (treatment B), but to determine if the two treatments were “equivalent”, at 
least on average, or at least that one treatment was not worse than the other.   Assume that 
experts have operationally defined “equivalent” to be “a mean difference no more than 
=0.40%.  That is, we are not requiring the two means to be absolutely identical, but only 
within 0.40 HBA1c units of each other in order to declare “equivalence”.  In particular, if 
treatment “B” is an old drug and treatment “A” is a new drug, to show “non inferiority” 
we need to show that the performance of A is within 0.40% of B in the population. That 
is: 
              mean under B minus mean under A < = 0.40% =  in the population 
                                to show non inferiority 
 
In ordinary hypothesis testing, we assume (the null hypothesis) that the two groups are 
the same (on average) and test to see if they are different.  In non inferiority hypothesis 
testing, we instead assume that the two groups are different (non equivalent), on average, 
by a specified “null” amount  in the population and need to prove that they are 
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equivalent.  That is, under non inferiority testing, the null hypothesis is that the mean 
difference is  or more versus the alternative that the difference is less than .  
                                                                                                                 _ 
So, under non inferiority testing, we need to see how far our observed d is from  where  
is NOT zero. For example, if =0.40%, the observed test Z statistic is  
 
   Zeq  = (0.34 – 0.40) / 0.093 = -0.643.      The 0.34 mean is only 0.643 SEs distant from 
0.40 
           One sided p value = 0.26 (area below Z= -0.643).  
 
So, even though we rejected the null hypothesis of no true mean difference earlier, here 
we cannot reject the null hypothesis of a difference larger than  in favor of equivalence. 
That is, we have not proved equivalence to within 0.40 in general even though the 
observed mean difference is 0.34, less than 0.40.  
                                                   _ 
   Non inferiority test,      Zeq = (d – )/ SEd 
 
The usual hypothesis testing uses the same formula with =0.  Since this can be very 
confusing, many investigators prefer to report the confidence interval.  In this example, 
the 95% confidence interval for the true mean difference of (0.16%, 0.52%) is consistent 
with both of these findings as it excludes zero and includes 0.30%.   
 
Confidence intervals vs hypothesis testing 
 
It is often easier to examine the confidence interval in order to decide whether to reject or 
fail to reject null hypotheses, even though one does not need to make any null hypothesis 
assumptions in order to compute a confidence interval.  
 
In general, if the confidence interval contains the null value, the corresponding null 
hypothesis is NOT rejected.  If the confidence interval excludes the null value, the 
corresponding null hypothesis is rejected.   Table A below illustrates this concept.  
 
In table A below, those confidence intervals that exclude zero are equivalent to finding 
statistical significance (i.e. rejecting the null hypothesis that the true difference is zero).   
Those confidence intervals that are completely between –D and +D demonstrate 
equivalence (non equivalence is rejected). Those intervals  that contain –D or +D but 
have limits below  –D or above +D are uncertain with regard to equivalence (null 
hypothesis of non equivalence is not rejected).  
 
The confidence level is related to the hypothesis testing p value.  If the 95% confidence 
interval contains the null value, the corresponding two sided p value will be larger than 
5%=0.05.  If the 95% confidence interval excludes the null value, the corresponding two 
sided p value will be less than 5%=0.05.   In general, if a 100(1-)% confidence interval 
excludes the null value, the corresponding two sided p value will be less than “”.  
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TABLE A 
 
Any confidence interval ( 95 % CIs intervals between the brackets in each of the 
examples) that does not overlap zero is statistically different from zero. Only intervals 
between the prespecified range of equivalence   
 

- D to + D present equivalence. 
 
Study  Statistical                   equivalence 
(1-8)   significance   demonstrated 
  demonstrated 
 

1. Yes ----------------------------------------------------------------------------------------------- < not equivalent > 
2. Yes -----------------------------------------------------------------------------<    uncertain     >-------------------- 
3. Yes ------------------------------------------------------------------< equivalent >----------------------------------- 
4. No ---------------------------------------------------< equivalent >--------------------------------------------------- 
5. Yes ----------------------------------< equivalent >------------------------------------------------------------------- 
6. Yes ---------------------< uncertain>---------------------------------------------------------------------------------- 
7. Yes -< not equivalent >----------------------------------------------------------------------------------------------- 
8. No ---------<___________________________uncertain________________________________>------ 
                                                      !                                                                    ! 
                                                    -D                        O                                      +D 
                                                                          true difference 
 
Ref:  Statistics Applied to Clinical Trials- Cleophas, Zwinderman, Cleopahas 2000 
Kluwer Academic Pub   Page 35  
 

Paired mean comparison 
 
Paired tests are similar to unpaired tests except the standard error is 
computed in a different way.  
 
Example:  serum cholesterol in mmol/L – before & after treatment 
 
Subject       baseline          4 weeks     |      difference  
     1                9.0                   6.5        |           2.5  
     2                7.1                   6. 3       |           0.8  
     3                6.9                   5.9        |           1.0  
     4                6.9                   4.9        |           2.0  
     5                5.9                   4.0        |           1.9 
     6                5.4                   4.9        |           0.5  
 Mean            6.87                5.42                   1.45   
   SD              1.24                0.97                   0.79 
   SE               0.51                0.40                  0.32 



 11

                                              _ 
               Mean difference = d = 1.45  mmol/L  
        SEd = 0.79/√6 = 0.32 mmol/L ,    df = 6-1=5  
 
t0.975 = 2.571, 95% CI: 1.45 ± 2.571(0.32) or (0.62 mmol/L,2.28 mmol/L) 
            _   
t obs = d/SEd = 1.45/ 0.32 = 4.49,  p value < 0.001  
 
One cannot compute the SEd using the “Pythagorean” rule for 
paired comparisons.  
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    Prediction intervals and confidence intervals 
They are not the same thing 

 

Don’t confuse prediction intervals with confidence intervals.     
 

Standard deviation = SD = measure of an individuals variability (about the mean) for 
continuous data.  SDs are usually only quoted for continuous data.  
 

 But, for any statistic and any kind of data (a mean, an OR, a RR, a correlation coefficient…) 
 

Standard error = SE = measure of a summary statistic’s variability from sample to 
sample (= from study to study).  For a mean the SE is usually denoted SEM (standard 
error of the mean).  
 

Prediction intervals make a statement about the limits for individual readings and are 
computed from standard deviations and a very strong assumption that the data follow a 
Gaussian (“Normal”) distribution.    
 

  Example:  Serum inhibin B in fertile adult men has a mean of 255 pg/ml with a standard 
deviation of 59 pg/ml.  The 95% prediction interval is about 255 +/- 1.96(59) or (139 pg/ml, 371 
pg/ml). That is, about 95% of the fertile adult men should have serum inhibin B levels within 
these bounds if the data are well modeled by a Gaussian and if the 255 and 59 are accurate.  
 

  Confidence intervals are bounds for group summary statistics (means, mean 
difference, proportions, differences in proportions, risk ratios, odds ratios, slopes, 
correlations, difference in correlations …), not individuals.  Confidence intervals are 
computed from standard errors, not standard deviations. By the CLT, summary stats 
usually follow a Gaussian.  
 
   For one mean:  SEM = SD/n,   
For the difference between two means:   SEd = SEM1

2 + SEM2
2 

 
Imagine that we are interested, in general, in the mean difference in Serum inhibin B 
between fertile men and men with testicular failure.  The sample mean inhibin B in n=8 
fertile men is 255 pg/ml and the SD is 59 pg/ml. The sample mean inhibin B in n=16 men 
with testicular failure is 75 pg/ml and the SD is about 23 pg/ml.  The sample mean 
difference is 255 pg/ml – 75 pg/ml = 180 pg/ml. The SEd = 21.6 pg/ml 
 
A 95% confidence interval for this sample mean difference is 
 180 pg/ml +/- 1.96 (21.6)  pg/ml    or   (138 pg/ml, 222 pg/ml) 
 
One can imagine taking a census of all fertile men and all men with testicular failure (who are 
like the men in our sample) and determining the “true” population mean difference in inhibin B 
for all fertile versus testicular failure men.  In practical terms however, we never carry out such a 
census.  In our sample of 16+8= 24 men, our sample mean difference in this particular study is 
180 pg/ml.  When we compute a 95% confidence interval, we are following a process that, 95% 
of the time, gives an interval that contains the true (unknown) population value.  So, we don’t 
know the true population value for certain, but the 95% confidence interval gives a qualitative 
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assessment of  how much our sample value may be a good or bad estimate of the true population 
value.    
 
One can also think of a confidence interval for some sample statistic (such as a mean difference) 
as indicating how much this sample statistic might vary from study to study if all the studies were 
done the same way under identical conditions.  Obviously, sample statistics tend to vary about the 
true population value from sample to sample.    
 

Computing confidence intervals and hypothesis test p values 
 
 Confidence intervals are of the form 
 
             Sample Statistic     +/-   (Zpercentile)   (Standard error) 
 
   Lower bound =  Sample Statistic  -  (Zpercentile)  (Standard error) 
   Upper bound  =  Sample Statistic +  (Zpercentile)  (Standard error) 
 
  The table below shows various sample statistics and their corresponding standard error.  
       Sample Statistic            Symbol                                 Standard error (SE)                           
                                                                                                                                                     ___ 

       Mean                                 Y                                        S/√n  = √S2/n = SEM 
                                                                                                                                        ____                _____            ____ 

       Mean difference            Y1 – Y2 =d                              √S1
2/n1  +  S2

2/n2 = SEd 
       Proportion                         P                                             √P(1-P)/n  
       Proportion difference     P1 – P2                                             √P1(1-P1)/n1 + P2(1-P2)/n2 
       Log odds                       loge(P/(1-P)                          √ 1/nP  + 1/n(1-P) 
       Log odds ratio*             logeOR                                  √[ 1/a  + 1/b  + 1/c  + 1/d] 
       Log risk ratio*              logeRR                              √[ 1/a -1/(a+c)  + 1/b - 1/(b+d) ] 
       Correlation coefficient**    r,   z=½loge[(1+r)/(1-r)]                 SE(z)=1/√(n-3)                
       Slope (rate)                        b                                                Serror / Sx√(n-1) 
       Hazard (survival)               h                                                h/√ num dead 
 
Any sample statistic has a (sometimes complicated) formula for its standard error that 
depends on the root sample size, √n.  Note that, for the OR and RR we first compute the 
confidence bounds for log(OR) or log(RR) and then take the antilog of each bound.  
 
   Hypothesis test statistics (Zobs) are of the form 
 
                 Zobs = ((Sample Statistic – null value) / Standard error)   
 
where zero (0) is the usual null value. Once this test statistic has been computed, one uses 
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the appropriate table (such as the Gaussian table) to look up the corresponding p value. 
(We do not explain here how to actually compute a p value without a table).  The p value 
is the tabled area or probability of getting a test statistic the same as or more extreme 
than the computed Zobs value.  
 

Handy guide to statistical hypothesis testing and power 
 

Hypothesis testing always involves a comparison (to something) and produces a p value,  
a probability statement that allows “general” conclusions to be drawn about a comparison 
hypothesis based on data and statistics from a sample.  
 
Hypothesis testing involves a “null” hypothesis – An assumption that “nothing is going 
on” in the underlying population from which the sample data is taken.  
 
   Type of sample statistic/comparison              usual population null hypothesis  
        Comparing two means                               true pop mean difference is zero 
        Comparing two proportions              true pop difference between proportions is zero 
        Comparing two medians                           true pop median difference is zero 
 
         Odds ratio  (comparing odds)                   true pop odds ratio is one 
   Risk ratio = relative risk (comparing risks)    true pop risk ratio is one 
 
    Correlation coefficient (compare to zero)     true pop correlation coefficient is zero 
    Slope= rate of change=regression coeff        true pop slope is zero  
 
     Comparing Survival curves                       true difference in survival is zero at all times  
 
   b.   A “p value”. This is a probability.  However, it is not the probability of the null 
hypothesis given the data.  It is the probability of observing the data and corresponding 
statistic (for example, the mean difference) reported in a given study (or something more 
extreme) given that the null hypothesis is true in the underlying population.  Every p 
values has a null hypothesis that goes with it.  
 
Example:    Mean Serum inhibin B concentration is 255 +/- 59 pg/ml (mean +/- SD) in 
fertile men (n=8) and is 75 +/- 46 pg/ml in men with primary testicular failure (n=16).  
The mean difference is 255 – 75 = 180 pg/ml.  The p value is 0.0001. Taken literally, this 
p value says that, if, in general, in the populations of men who are fertile and men who 
have testicular failure, the true mean difference () is zero pg/ml, then, we should see a 
sample mean difference of   d  =180 pg/ml (or greater) only once in every 10,000 studies 
of this type. (1/10,000 = 0.0001.)  Since we in fact did see an average difference of 180 
pg/ml in our particular study, we reject the idea that, in general, the mean difference is 
zero and conclude that, in general, the mean is higher in fertile men compared to men 
with testicular failure.  
 
(Often, it is easier and more comprehensible to report a confidence interval.  One does 
not need to worry about null hypotheses with confidence intervals).  
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                                          Testing guide / nomenclature 
 
“= Delta” =  The true difference or size of the “effect” in the population. For example, 
delta could be the true population difference between two means or between two 
proportions. Under the null hypothesis, delta is zero. When “something is going on”, or 
there is an “effect”, delta is not zero.  Delta is sometimes also called the “effect size”.  
Clinically, one often needs to define the smallest non zero delta that is of any 
clinical/medical value.  
 
    =Alpha probability  = type I error = false “positive”   (usually set to alpha = 0.05) 
Probability of  “rejecting” the null hypothesis when there really is no effect or difference  
(i.e when the null hypothesis really is true).  This is the “criterion” value that we use for 
deciding if a given p value is “statistically significant” or if a given difference or 
correlation is significant “beyond chance”.  The p value has to be smaller than alpha in 
order to declare statistical significance.  
 
    = Beta probability  = type II error = ‘false “negative”  
This is the probability of not rejecting (getting a large p value) when, in fact, there is a 
real difference (something is going on and delta is not zero).  
 
    Power  = 1 – Beta = probability of getting a p value less than alpha (i.e declaring 
“significance”, when, in fact, there really is a non zero delta.  
 
We want small alpha levels and high power.  
 
Check out your intuition.  All else held equal: 
    As delta gets larger,  power gets (larger or smaller) 
    As the sample size gets larger, power gets (larger or smaller) 
    As alpha gets larger, power gets (larger or smaller) 
    As patient heterogeneity gets larger (SD gets larger), power gets (larger or smaller) 
  
Statistic/type of comparison                             test/analysis procedure 
 Mean comparison-unpaired    t test (2 groups), analysis of variance (ANOVA-3+ groups) 
 Mean comparison-paired                     paired t test, repeated measures ANOVA 
 Median comparison-unpaired           Wilcoxon rank sum test (2 grp), Kruskal Wallis test* 
 Median comparison-paired      Wilcoxon signed rank test on differences*, Friedman test* 
   
 Proportion comparison-unpaired                   chi-square test (or Fishers test) 
 Proportion comparison-paired                       McNemar’s chi-square test 
      Odds ratio                                                  chi-square test 
      Risk ratio                                                   chi-square test 
 
       Correlation, slope                                     regression, t statistic 
       Survival curves, hazard rates                   log rank chi-square test 
 
* non parametric – Gaussian distribution theory is not used to get the p value  
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Parametric versus non parametric p values and confidence intervals 
 
When the distribution of continuous data does not follow the Gaussian (normal bell 
curve) distribution (or is at least close to it), there is a concern that p values or confidence 
intervals computed using the Gaussian table (or t table) are not correct, particularly when 
the sample sizes are small.  Therefore, ways have been developed using the ranks of the 
data values to compute p values and confidence intervals for comparison statistics 
without the Gaussian assumption.  
 
The methods using the Gaussian assumption are often called “parametric” methods since 
the data distribution is “parameterized” by the Gaussian.   If a p value or confidence 
interval is computed using non Gaussian rank methods (that is, with no Gaussian 
distribution assumption), this is called a “non parametric” computational method.  
 
    Parametric methods                                       Non parametric methods 
 
 Comparison              method                       Comparison               method 
comparing two           t test                         comparing two      Wilcoxon rank sum test 
  means (2 groups)                                      medians (2 groups) (=Mann-Whitney U test) 
 
paired mean             paired t test                median difference   Wilcoxon signed rank test 
comparison                                                                                
 
comparing several     ANOVA                    comparing several       Kruskal-Wallis test 
 means (3+ groups)                                      medians (3+ groups) 
 
Correlation        Pearson correlation             Correlation       Spearman rank correlation 
 
 
The methods for computing p values and confidence intervals when comparing 
proportions, odds & odds ratios, risks and risk ratios, hazards and survival curves are 
generally all non parametric. 
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selected t percentiles 

percentile 85th 90th 95th 97.5th 99.5th  

conf level 70% 80% 90% 95% 99th%  

df = degrees of freedom = sample size minus num unknown parameters 

2 1.386 1.886 2.920 4.303 9.925  

3 1.250 1.638 2.353 3.182 5.841  

4 1.190 1.533 2.132 2.776 4.604  

5 1.156 1.476 2.015 2.571 4.032  

6 1.134 1.440 1.943 2.447 3.707  

7 1.119 1.415 1.895 2.365 3.499  

8 1.108 1.397 1.860 2.306 3.355  

9 1.100 1.383 1.833 2.262 3.250  

10 1.093 1.372 1.812 2.228 3.169  

11 1.088 1.363 1.796 2.201 3.106  

12 1.083 1.356 1.782 2.179 3.055  

13 1.079 1.350 1.771 2.160 3.012  

14 1.076 1.345 1.761 2.145 2.977  

15 1.074 1.341 1.753 2.131 2.947  

20 1.064 1.325 1.725 2.086 2.845  

25 1.058 1.316 1.708 2.060 2.787  

30 1.055 1.310 1.697 2.042 2.750  

35 1.052 1.306 1.690 2.030 2.724  

40 1.050 1.303 1.684 2.021 2.704  

45 1.049 1.301 1.679 2.014 2.690  

50 1.047 1.299 1.676 2.009 2.678  

55 1.046 1.297 1.673 2.004 2.668  

60 1.045 1.296 1.671 2.000 2.660  

65 1.045 1.295 1.669 1.997 2.654  

70 1.044 1.294 1.667 1.994 2.648  

75 1.044 1.293 1.665 1.992 2.643  

80 1.043 1.292 1.664 1.990 2.639  

85 1.043 1.292 1.663 1.988 2.635  

90 1.042 1.291 1.662 1.987 2.632 

95 1.042 1.291 1.661 1.985 2.629 

100 1.042 1.290 1.660 1.984 2.626 

10000 1.036 1.282 1.645 1.960 2.576 <- Gaussian 
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Section V 
 

Sample size and 
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V-  Sample size calculations and power 
 
Sample size for precision / confidence intervals 
 
One basis for computing a sample size is to compute the sample size needed to make a 
confidence interval of a certain desired width. That is, the sample size is determined in 
order to achieve a given precision needed when estimating the population parameter of 
interest.  
 
Example:  
 
The Public Health officer wants to sample adult immigrants from Vietnam in order to 
estimate , the population  prevalence of TB.  If P is the proportion with TB in a sample 
of “n” immigrants, the standard error for P is given by SE = P(1-P)/n.   The 95% 
confidence bounds for the true , the population TB prevalence, is   P +/-  1.96P(1-P)/n 
Therefore, if we want to estimate prevalence to within  +/- 6% of its true value (with 95% 
confidence),  
 
we need    0.06 = 1.96 P(1-P)/n.    Solving for n, we find  
 
               n= (1.96)2 P(1-P) /( 0.062) = 3.84 P(1-P)/ 0.0036.  
 
So we now also need to guess at the true value of P.  If the true  is 0.15 (ie. 15% have 
TB), then n = 3.84  0.15(0.85)/ 0.0036 = 136.  The largest n is obtained when P=0.5, in 
which case n = (3.84 x 0.25) / 0.0036 = 267.  This is the most conservative value to use.  
(Conservative rule of thumb: if you want precision +/- w, sample size is less than 1/w2.)  
 
We can do similar calculations for any summary statistic, including correlation and 
regression coefficients and risk and odds ratios.  
 
Power and sample size 
 
 More often, we compute the sample size in order to achieve a given statistical power.  
(Usually 80% power or more).  Power is a concept under hypothesis testing. As shown 
below, power is defined as the probability of getting a statistically significant result (ie 
getting p < ) when the null hypothesis is false, that is, when there really is some non 
zero difference () or, more generally, some non null association.  If  is the probability 
of a “false negative” – that is, of failing to reject the null hypothesis when the null is 
false, power is defined as 1-. 
 
                                        Hypothesis testing decision table  

 Null true (no difference) Null False (difference) 
Test: Don’t reject 1- (correct)  (error) 

Test: Reject  (error) (1-) correct=power 
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 Power is computed via a Z score by 
 

            Zpower =   Zobs – Z  
 

where  Zpower is the Z percentile corresponding to the power, Zobs is the hypothesis testing 
Z statistic as before and Z is the Z percentile corresponding to the alpha level. In the 
case of comparing two means with assumed difference d=, for the usual =0.05, Z = 
1.96 and Zobs=d/SEd,  the power is given by 
                                              _ 

            Zpower =  (d/SEd) –1.96 
 
             Example: Mean HBA1c change difference under two treatments 
                  (Same example as above with much smaller sample size)  
 
            HBA1c change  
     Treatment       n      Mean change    SD      SEM 
     Liraglutide     5          -1.24             0.99    0.443 
     Sitaglipin       4          -0.90             0.98    0.488 
                         _ 
 For this data,   d= 0.34%  SEd = 0.4432 + 0.4882 = 0.659 
          Zobs = 0.34/0.659 = 0.516,   two sided p value = 0.622. 
 

Since p = 0.622, we say “not statistically significant” using the =0.05 criterion.   This 
does NOT mean that we have shown Liraglutide to be equivalent to Sitaglipin.  We ask 
“what is our power?”.  
 

In this example,   Zpower =   0.516– 1.96  = -1.44.    Using the Gaussian table, Z=-1.44 is 
about the 7th percentile.  So our power here is only about 7%.  
 

This means that, even if the true  in the population is not zero and favors Liraglutide, so 
that, on average, Liraglutide really is better than Sitaglipin, using the p < 0.05=  
criterion and these sample sizes, we would only get statistical significance about 7% of 
the time.  We “didn’t have a chance” of getting statistical significance, even if Liraglutide 
really is better than Siraglipin in general.  
 

Low power implies that we failed to find significance because we did not 
collect enough data, not that the null hypothesis is correct.  Only if we 
fail to reject and have high power can we conclude that the null 
hypothesis is proven.  
 
It is incumbent upon investigators to compute power for the smallest true mean 
difference () that is clinically worthwhile when planning a study. This will help avoid 
interpreting a “non significant” result as a “negative” result.  This is best done during the 
planning stage if the intent it to have a definitive results.  
 
In general, if a result is not statistically significant,  we want at least 80% power in order 
to conclude that the null hypothesis is actually true.  
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It is wrong to conclude that a non significant result is a negative result.  In order to really 
affirm that we have a negative result, we also must show that we have high power for the 
smallest true difference of interest.  
 
Obviously, the better course of action is to estimate the sample size needed to obtain at 
least 80% power (or some other high power level) before we start a study.  This is why 
many research sponsors (such as the NIH) will not fund a study unless there is high 
power (say, 80% or 90% power) for the primary outcome.  
 
Solving the above formula for “n”, tables and computer software are available that give 
the required sample size for a given power level and the power for a given sample size.  
 
In the case of comparing two means between two groups with the same sample size of 
“n” per group,  
                               n = 2 (Zpower + Z)2 (/)2.    
 

 For 80% power, Zpower = 0.842,  for =0.05, Z = 1.96 so, in this case 
 

          n=2(0.842+1.96)2 (/)2 or n = 15.7(/)2  (4/)2  (range/)2 
 
Summary - Power gets larger as: 
  a.  The true difference () gets larger 
  b.  The sample size gets larger 
  c.  The  level gets larger  (ie. less strict significance criterion) 
  d.  The patient heterogeneity () gets smaller 
 
Generally, we set power = 1- = 0.80 and  = 0.05. Therefore, in order to determine the 
sample size, you must have at least a crude estimate of  and .   We generally set  to be 
the smallest difference that is clinically important.  We estimate  from past data on 
similar patients (often from the literature) or get some pilot data on a few new patients or 
use the best clinical judgment.  A crude rule based on Gaussian theory is to set  to the 
range/4 after removing any outliers.  
 
We can do power/sample size computation for any summary statistic, not just mean 
differences. The methods are similar to the above. When comparing proportions (and 
their corresponding odds ratios and/or risk ratios),  is a function of the proportions so 
separate prior knowledge of  is not needed. However, one needs to specify the two 
proportions, not just the difference  between them.  
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  Sample size per group for comparing two means 

           from two independent groups 

mean diff = smallest mean difference of interest                alpha = 0.05, two sided 

mean diff/SD= / 70% power 80% power 90% power  

0.10 1234 1570 2102  

0.15 549 698 934  

0.20 309 392 525  

0.25 198 251 336  

0.30 137 174 234  

0.35 101 128 172  

0.40 77 98 131  

0.45 61 78 104  

0.50 49 63 84  

0.55 41 52 69  

0.60 34 44 58  

0.65 29 37 50  

0.70 25 32 43  

0.75 22 28 37  

0.80 19 25 33  

0.85 17 22 29  

0.90 15 19 26  

0.95 14 17 23  

1.00 12 16 21  

1.05 11 14 19  

1.10 10 13 17  

1.15 9 12 16  

1.20 9 11 15  

1.25 8 10 13  

1.30 7 9 12  

1.35 7 9 12  

1.40 6 8 11  

1.45 6 7 10  

1.50 5 7 9  
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    Ref – Hulley & Cummings, Designing Clinical Research, 1988, Williams & Wilkins
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Sample size checklist 
 
One of the most important questions when planning a study and meeting with a 
statistician is determining the number of subjects needed to carry out the study and get a 
definitive answer.  
 
In order to determine a sample size, one must know (or guess at): 
 
Effect size (“delta”)  - size of treatment effect such as a mean difference, a difference in 
proportions, a difference in rates, a ratio – what is the smallest difference (on average) 
or ratio that is clinically important?   Sample size decreases as effect size increases.  
 
Time of comparison – For a time dependent outcome, the time it takes to achieve the 
effect. For example, we might say that a reduction from 50% to 30% is expected after 
two years.  The sooner the difference specified occurs, the smaller the sample needed.   
 
Follow up time – For time dependent outcomes, the amount of time persons are followed 
is as important as the number of people.  The required sample size can be reduced 
somewhat without loss of power if persons are followed longer.  
 
Variability – Patient heterogeneity such as the within group standard deviation.  Sample 
size increases as variability increases.  
 
Power – Usually a minimum of 80% power is required (NIH).  Sample size increases if a 
higher power is required.  
 
Alpha level – This is usually set at 0.05 two sided.  Sample size decreases if a more 
liberal (larger) alpha is used. But a larger alpha is a higher false positive error rate.  
 
The above gives the sample size if there were no dropout or loss to follow up 
 

 
  In addition, on any prospective study with recruitment over time, one must give: 
 
The percentage who will agree to participate = 100% - refusal percentage 
   (or sometimes the refusal rate per unit of time) 
 
The accrual rate (per unit time) 
 
The dropout / loss to follow up rate (per unit time) 
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Hypothesis testing & sample size limitations 
 

Pseudo replication 
 

Most variation is between person, not within person.  
 

A common mistake made with regard to sample size is confusing the number of 
observations made on each person (or each “experimental unit”) with the number of 
persons in a study.  

 
Example: If m=2 two blood samples are taken on n=10 persons, the “effective” sample 

size is 10, not 20.  
 

In general,  the standard error for any group statistic, such as a mean, is now influenced 
by two sources of variation, within person variation and between person variation.  

 
Observed observation =  

 true population parameter + between person variation + within person variation 
 

Under this circumstance, a mean  is computed in two stages: 
 

1. Compute a mean for each person from her “m” observations 
2. Compute the group mean from the “n” individual person means.  
 
Other summary statistics are often computed similarly.  
 
 If there are “m” observations per person and “n” people, the standard error (SE) for the 
group mean is given by  
 
      SE of the mean = SEM  = √σp

2/n + σe
2/nm  

 
where σp is the standard deviation of the between person variation and σe is the standard 
deviation of the within person variation. In most circumstances, σe < σp, so, to a 
reasonable approximation, the SEM is equal to σp/√n as usual. That is, the contribution of 
σe

2/nm to the SEM is negligible, particularly when m is large. When m=1, (one 
observations per person) one cannot distinguish between σp and σe.    
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    Statistical significant versus clinical/scientific significance 
 

While it takes substantial effort to compute p values and determine 
whether effects are “beyond chance”, one must not forget that p 
value based “statistical significance” is NOT the same as clinical 
importance. The much higher priority is to first determine whether 
results are of scientific or clinical importance, not whether they are 
“statistically significant”  (“A difference, in order to be a 
difference, must make a difference”–Gertrude Stein?).   

 
If you are in charge of research funding, which of the two studies 
below, I or II, should be given more research funds? 
 

Average drop in weight (kg) after dieting for 3 months 
 

Diet      mean drop   p value       95% confidence interval 
  I            0.50            < 0.001             (0.45, 0.55) 
II           10.0                0.16                (-5.0, 25.0)  
 
       *** 
                 p value limitations 
Reporting p values alone is not enough.  The American Statistical 
Association (ASA) lists 5 limitations.  
  
1. p values do not measure the probability that the studied 
hypothesis is true, or the probability that the data were produced by 
random chance alone (ignoring the model). 
2. Conclusions should not be based only on whether a p-value 
passes a specific threshold. 
3. Proper inference requires full reporting & transparency. 
4. A p-value does not measure the size of an effect or the 
importance of a result. 
 5. A p-value alone does not provide a good measure of evidence 
regarding a model or hypothesis
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                         Multiple hypothesis testing 
 

“If you torture the data long enough, it will eventually confess” 
 
Multiple testing- Multiple analyses: 
   Multiple efficacy endpoints /outcomes 
   Multiple safety endpoints/outcomes  
   Multiple treatment arms and/or doses   
   Multiple interim analyses 
   Multiple patient subgroups   
    
   Example- Exploratory vs confirmatory - protein comparison  
 
 750 proteins are compared in two groups.  There are statistically significant differences 
at p < 0.05 in 12 proteins.  
 

Protein name  Atril fib  Atherosclerosis p value 

RAS guanyl‐releasing protein 2  33.3%  0.0%  0.0000 

Glutathione S‐transferase P  38.9%  100.0%  0.0000 

Selenium‐binding protein 1  22.2%  0.0%  0.0000 

Nucleosome assembly protein 1‐like 4  16.7%  0.0%  0.0000 

Integrin beta;Integrin beta‐2  11.1%  50.0%  0.0000 

Spectrin alpha chain, non‐erythrocytic 1  11.1%  0.0%  0.0000 

Pituitary tumor‐transforming gene 1 protein‐interacting   11.1%  0.0%  0.0000 

WW domain‐binding protein 2  16.7%  50.0%  0.0000 

Syntaxin‐4  5.6%  0.0%  0.0006 

CD9 antigen  27.8%  50.0%  0.0013 

ATP synthase‐coupling factor 6, mitochondrial  27.8%  50.0%  0.0013 

Flotillin‐1  77.8%  100.0%  0.0037 

Aconitate hydratase, mitochondrial  38.9%  50.0%  0.1142 

Fructose‐bisphosphate aldolase C  94.4%  100.0%  0.4402 

Alpha‐adducin  50.0%  50.0%  1.0000 

40S ribosomal protein SA  1.0%  1.0%  1.0000 

Abl interactor 1  1.0%  1.0%  1.0000 

Bone marrow proteoglycan;Eosinophil granule major basic  1.0%  1.0%  1.0000 

Tubulin alpha‐4A chain  100.0%  100.0%  1.0000 

… (750 proteins total)     
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Example - The “disease score” ranges from 2 (good) to 12 (worst).  
 
Scenario A:  Due to prior suspicion (prior information), only patients 19 and 
47 are measured and both have scores of 12. We report that they are 
“significantly” ill.   
 
Scenario B:  The score is measured on 72 patients.  Only patients 19 and 47 
have scores of 12. We report that they are “significantly” ill. 
 
Is the amount of “evidence” or “belief” that patients 19 and 47 “really” are 
very ill (have “true” score of 12) the same in both scenarios? The data for 
patients 19 and 47 are the same in both scenarios.  
 
Most would agree that, if both patients were retested (confirmation step), 
and came out with lower scores, this would decrease the belief that there 
“true” score is 12. If they came out with 12 again, this would increase the 
belief that the true score is 12.     
 
Example - Imagine two different situations in evaluating a new 
drug for arthritis compared to aspirin. 
 
A.  Only pain (0-10) and swelling (0-10) are measured and both 
are significantly better at p < 0.05 on the new treatment compared 
to aspirin.  
B.  Ten different outcomes are measured: pain, swelling, activities 
of daily living, quality of life, sleep, walking, bending, lifting, 
grinding, climbing.  Of these 10, the investigators only report the 
two (pain, swelling) that were better on the new treatment after 
looking at the results for all ten. They fail to report the other eight, 
which were not significant at p < 0.05.   
 
Issue 1 – It is grossly misleading to only publish the results from 
these two tests and not reveal that the other 8 were examined, with 
“negative” results.  
 

In a confirmatory study, must state what comparisons / analyses 
will be done in advance.  
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    Say, instead, the investigators did report all 10.   
 
Issue 2- (Bonferroni)  Out of m tests, if they are all independent 
and we use the p < 0.05 criterion, we expect, on average, that  
0.05 m of them to come out “significant” by chance alone even if 
none of the m really have any true effect in the population.  
 

   Num of tests     probability at least one is significant at 0.05 
         (m)                      even if null hypothesis is true for all* 
             1                                          0.0500 
             2                                          0.0975 
             3                                          0.1426 
             4                                          0.1855 
             5                                          0.2262 
           10                                          0.4013 
           20                                          0.6415 
           25                                          0.7226 
           50                                          0.9231 
* assuming independence 
 
Usually, the tests are not all independent so results are not this bad, 
but the above should convey the general issue.  
  
 What to do about multiple testing –  Holm/Hochberg criterion 
 

Option 1 – Use the nominal α level for each test. That is declare 
significant if p value < α. This can produce too many false 
positives (type I error > α) but keeps power at 1-β.  
 

Option 2 – Use the Bonferroni criterion (not recommended).  
Declare significant only if p < α/m.  This is very conservative if m 
is large and therefore can produce too many false negatives (low 
power) but guarantees that the overall type I error is ≤ α.  
 
Option 3 – Use the Holm-Hochberg (H-H) criterion / rule.  
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  a.  For m significance tests, sort the “m” p values from smallest to 
largest.  Denote the smallest p1, next smallest p2, …. pm. 

  b. Declare the ith ordered p value (pi) significant only if pi < 
α/(m+1-i). If, for i=k, pk ≥ α/(m+1-k), then pk and all subsequent 
larger ordered p values (pk+1, pk+2, … pm) are declared non 
significant.  
The H-H rule  keeps the overall type I error ≤ α.  
The -H rule guarantees that the overall false positive rate will be ≤ 
α.  It is a compromise between options 1 and 2 above.  
 
                      Example for m=5 
     i        p value                  criterion = (i/5)α     criterion if α=0.05 
     1       p1-smallest                  α/5                              0.0100 
     2       p2                                α/4                              0.0125 
     3       p3                                α/3                              0.0167 
     4       p4                                α/2                              0.0250 
     5       p5-largest                       α                              0.0500 
 
    Bonferroni significance criterion is p < α/m=0.05/5=0.01  
 
There are several other options, most of which we will not study.  
(See ANOVA section for methods specific to ANOVA).  
 
Later we will study omnibus screening tests such as the F and chi-
square tests.  
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                 FDR, a more liberal alternative to FWER  
 
If a “family” of “m” hypothesis tests are carried out, the family wise error rate (FWER) is 
the chance of any “false positive” type I error assuming that the null is true for all m tests. 
  
Rather than control the FWER, it may be preferable to control the number of “positive” 
tests (not all m tests) that are false positives. This is called controlling the false discovery 
rate (FDR), a less stringent criterion.   
 
For FDR, the ith ordered p value must be less than (i/m)α which is larger than Holm-
Hochberg α/(m+i-i) for FWER. 
 

 Declare non sig Declare sig total 
Truth-Null True U V m0 
Truth-Null False T S m-m0 

total m-R R m 
 
          FWER = V/m, the probability that V ≥ 1,        FDR = V/R, more liberal 
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                     FWER vs FDR , m=5 hypothesis tests,   α=0.05 
 

p value FDR criteria FWER criteria 
p1-smallest (1/5)α=0.01 α/5=0.01 

p2 (2/5)α=0.02 α/4=0.0125 
p3 (3/5)α=0.03 α/3=0.0167 
p4 (4/5)α=0.04 α/2=0.025 

p5-largest (5/5)α=0.05 Α=0.05 
 
      Multiple testing and designating primary versus secondary outcomes 

 
When there are “m” outcomes, we must have a stricter alpha level criterion for each 
outcome in order to control for the overall type I error in all m.  This leads to a larger 
sample size if alpha is smaller.   
 
However, in most studies, not all outcomes or endpoints may be equally important.  
Therefore it is common to designate the most important outcomes “primary” and let m be 
the number of primary outcomes. That is, one only controls for the overall type I error 
rate in the primary outcomes. Since the secondary outcomes are less important, one does 
not include them in the “family” of m primary outcomes and one is therefore not as 
concerned if there is a false positive finding among the outcomes designated as 
secondary.  
 
However, one must designate the primary and secondary outcomes in advance, before the 
results of the study are known. It is not fair to declare which outcomes are primary and 
which are secondary based on their p values.  
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               Statistical Analysis Plan outline 
 
Statistical models and methods to answer study questions (Aims) 
 
         Conclusions = data + models (assumptions)   
 
 Each specific aim needs a stat analysis section. 
 
Sample size and power follows the analysis plan. 
 
    Outline: 
 •Outcomes:  denote primary & secondary 
 
 •Primary predictors or comparison groups 
 
 •Covariates/confounders/effect modifiers 
 
     •Methods for missing data, dropouts  
 
     •Interim analyses (for efficacy, for safety) 
 


