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III – Distributions and the Gaussian Distribution 
 
Notation - We will introduce two types of notation to distinguish between samples and populations 
(universes). A population or universe is a complete census of all members of a group.  For example, if 
we want to know the average age of practicing pediatricians in the city of Los Angeles, we will know the 
this average exactly if we can get the birth date of all practicing pediatricians (say, from State records). 
However, more often we will not have a complete census, but will only have a sample.  While the 
population may consist of 12,000 pediatricians, our sample may consist of far fewer. 
 
We generally use Greek letters to denote population quantities, called population parameters, and we 
use Latin letters to denote sample quantities, call sample statistics.     

 
Notation in populations versus samples 

 
Quantity         population symbol        sample symbol 
                                              _ 
  Mean                                       Y 
Standard deviation                           S 
Proportion                                   P 
Correlation coeff                            r 
Slope                                        b 
Intercept                                    a 
Number of persons      N                      n 
 
 

Probability distributions 
 
As we saw earlier, the distribution of sampled values can be represented by a histogram as in our 
stomach cancer survival data.  
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Suppose that the sample comes from a large population of patients. If we had the survival times of all 
patients in the population (i.e. all with stomach cancer) we could draw a histogram for the whole 
population.  Since the population size is large, the class or bin sizes for the histogram could be small.  We 
could also smooth over the steps of the histogram and produce a continuous curve. It might look like the 
picture below.  
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If the vertical axis of this curve is scaled so that the area under the curve is one, it is called a probability 
distribution.  The continuous function f(y) sketched above is called the probability density function.  
Numerical quantities that have a probability distribution in a population are called random variables. 
So, in this example, we have a probability distribution of the random variable Y = survival time.   
 
Properties of a probability distribution – area under the curve 
 
In a probability distribution, the area under the curve between two values y1 and y2 equals the proportion 
of the population with values of Y between y1 and y2. Using “pr” to stand for this proportion (or this 
probability), one writes in symbols 
 
     Pr(y1 < X < y2) = A 
 
                            A                                                              B                    1-B 
 
 
          y1                                        y2                                                       Y 
 
where A is the area shown below.   By definition, if B = pr(Y < y), then y is called the 100th B percentile 
of the distribution.  That is, y is the 100Bth percentile if y is the value that has 100 B percent of the area 
“behind” it.  
 
The area A is also the probability that a randomly selected member of the population has a value of Y 
between y1 and y2.  The probability of other events can be found by using the relationship between 
probability and area under the probability distribution. For example 
 
                            Pr(y1 < Y < y2) + Pr(y2 < Y < y3) = pr(y1 < Y < y3) 
 
 
 
 
 
 
 
                      y1                                                y2                                     y3 
 
Population means and variances  
 
The population mean  and variance 2 of Y are defined by the probability distribution by the formulas  
            =    y f(y) dy                    2 =   (y - )2  f(y) dy  
 
The population SD is the root of the population variance.  That is  = 2. 
These definitions are analogous to the sample mean, variance and SD.  
 
 



 

                                   Standardized variables (Z scores) 
 
If the mean  is subtracted from all the Y values in the population, the resulting quantity has mean zero.  
Moreover, if we also divide Y-  by the standard deviation , the resulting quantity has mean zero and 
standard deviation of 1.0.  That is, the quantity Z, defined as  
 

                Z = (Y - )/              (so    Y = μ + Z σ )  
 

has mean zero and SD=1 over the entire population.  Of course, in general,  and  are not usually 
known.   Instead, in any sample, we only know Y and S.   
 
In our survival data sample,  if the true mean is =20 days and the true  is =14 days,  the standardized 
values are as below. Y= original data in day, Z is in SD units from μ. 
 
Y=                        4,     6,       8,      8,     12,      14,      15,    17,      19,    22,    24,   34,  45    
Z=(Y-20)/14=  -1.14,-1.0, -0.86,-0.86,-0.57, -0.43, -0.36, -0.21, -0.07, 0.14, 0.29, 1.0,1.79 
 
If the true mean is 17.5 days, the same as the sample mean, and the true SD is 11.68 days, the same as the 
sample SD, then the Z scores are  
 
Y=                              4,     6,         8,      8,     12,      14,      15,    17,      19,    22,    24,   34,  45    
Z=(Y-17.5)/11.68   -1.16,-0.99, -0.82, -0.82, -0.47,-0.30, -0.22, -0.05, 0.13, 0.38, 0.55, 1.41, 2.35 
 
The Gaussian (“Normal”) distribution  
 
The “bell shaped” or Gaussian distribution is a special density function ( f(y) ) that plays a central role as 
a statistical model for data. Mathematically, the definition of the Gaussian density function with mean  
and SD of   is given by  
 
Rel frequency=  f(y) =  (1/  [2 2] ) exp[ -(1/22) (y-)2]        (don’t memorize this formula)  
 
The “standard” Gaussian is the Gaussian with =0 and =1.  Setting =0 and =1 in the above formula 
gives the standard Gaussian density function 
 
  f(z) =  (1/  [2] ) exp[-z2/2]                                        (don’t memorize this formula either)  
 
Area under the curve for the standard Gaussian  
 
Mathematically, the area from –infinity to Z is given by the integral of f(z).  However, this integral has no 
closed form.  
 Standard Gaussian,  μ=0, σ=1 
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   Thus, tables are given for the area below Z .  
   
   Value of Z      area below Z (=percentile/100)  
         -2                        0.0228 = 2.28% 
         -1.5                     0.0668 = 6.68% 
         -1                        0.1587 = 15.87% 
           0                       0.5000 = 50.0% 
         +1                       0.8413 = 84.13% 
         +1.5                    0.9332 = 93.32% 
         +2                       0.9772 = 97.72% 
 

Using the standard Gaussian to calculate area for any Y assumed to have a 
Gaussian distribution. 

 
If we want areas and/or percentiles for a variable Y with known mean  and known SD , one can first 
calculate the standardized value 
 
                Z = (Y - )/                        
 
and then look up the area (percentile) corresponding to Z.    
 
Example:  Assume Y has a Gaussian distribution with mean =20 and SD  = 14.  What proportion of 
the Y values will be less than 35.  This is the same as the probability that Y will be less than 35.  
 
Answer:   Z =   (35-20)/14 = 1.07.   Looking up 1.07 on the Gaussian table gives an area of (about) 0.85. 
Thus, 35 is about the 85th percentile.  That is, about 85% of the area is less than 35.  Equivalently, the 
probability of being 35 or less is 0.85.  The probability of being more than 35 is 1-0.85=0.15. 
 
Example:  What is the upper quartile (75th percentile) value Y for a Gaussian distribution with mean =8 
and SD  = 5.   
 
Answer: The area of 0.75 corresponds to the standardized Z value of Z= 0.674. We know Z, we now 
need Y.      So,   0.674 = (Y – 8)/5.    Therefore, Y = 5 (0.674) + 8 = 11.37.  
 

Using the Gaussian 
  
To a very good approximation, test scores on the National Boards (i.e SAT) have a Gaussian distribution 
with population mean, =500 and population SD, =100 
 
 Q: What is the 80th percentile (a value called Y80)?    
 
 A: Y80 = 500 + Z80 x 100 = 500 + .842 x 100 = 584 
 
 Q: What percentiles do scores of 700, 500 and 450 correspond to?  
 A:   X             Z                 area (percentile) 
     700     (700-500)/100 =   2       .9772  (97.72%) 
     500     (500-500)/100 =   0       .5000  (50.0 %)  
     450     (450-500)/100 = -.5       .3085  (30.85%) 



 
 

The Standard Cumulative Gaussian Distribution 

Z is in SD units below or above the mean 

Z area behind z 
(percentile/100) 

Z area behind z 
(percentile/100) 

Z area behind z 
(percentile/100) 

-3.00 0.0013      
-2.95 0.0016  -0.95 0.1711 1.05 0.8531 
-2.90 0.0019  -0.90 0.1841 1.10 0.8643 
-2.85 0.0022  -0.85 0.1977 1.15 0.8749 
-2.80 0.0026  -0.80 0.2119 1.20 0.8849 
-2.75 0.0030  -0.75 0.2266 1.25 0.8944 
-2.70 0.0035  -0.70 0.2420 1.30 0.9032 
-2.65 0.0040  -0.65 0.2578 1.35 0.9115 
-2.60 0.0047  -0.60 0.2743 1.40 0.9192 
-2.55 0.0054  -0.55 0.2912 1.45 0.9265 
-2.50 0.0062  -0.50 0.3085 1.50 0.9332 
-2.45 0.0071  -0.45 0.3264 1.55 0.9394 
-2.40 0.0082  -0.40 0.3446 1.60 0.9452 
-2.35 0.0094  -0.35 0.3632 1.65 0.9505 
-2.30 0.0107  -0.30 0.3821 1.70 0.9554 
-2.25 0.0122  -0.25 0.4013 1.75 0.9599 
-2.20 0.0139  -0.20 0.4207 1.80 0.9641 
-2.15 0.0158  -0.15 0.4404 1.85 0.9678 
-2.10 0.0179  -0.10 0.4602 1.90 0.9713 
-2.05 0.0202  -0.05 0.4801 1.95 0.9744 
-2.00 0.0228  0.00 0.5000 2.00 0.9772 
-1.95 0.0256  0.05 0.5199 2.05 0.9798 
-1.90 0.0287  0.10 0.5398 2.10 0.9821 
-1.85 0.0322  0.15 0.5596 2.15 0.9842 
-1.80 0.0359  0.20 0.5793 2.20 0.9861 
-1.75 0.0401  0.25 0.5987 2.25 0.9878 
-1.70 0.0446  0.30 0.6179 2.30 0.9893 
-1.65 0.0495  0.35 0.6368 2.35 0.9906 
-1.60 0.0548  0.40 0.6554 2.40 0.9918 
-1.55 0.0606  0.45 0.6736 2.45 0.9929 
-1.50 0.0668  0.50 0.6915 2.50 0.9938 
-1.45 0.0735  0.55 0.7088 2.55 0.9946 
-1.40 0.0808  0.60 0.7257 2.60 0.9953 
-1.35 0.0885  0.65 0.7422 2.65 0.9960 
-1.30 0.0968  0.70 0.7580 2.70 0.9965 
-1.25 0.1056  0.75 0.7734 2.75 0.9970 
-1.20 0.1151  0.80 0.7881 2.80 0.9974 
-1.15 0.1251  0.85 0.8023 2.85 0.9978 
-1.10 0.1357  0.90 0.8159 2.90 0.9981 
-1.05 0.1469  0.95 0.8289 2.95 0.9984 
-1.00 0.1587  1.00 0.8413 3.00 0.9987 

    

95.45% of the area is between Z= -2 and Z=2 

95% of the area is between Z=-1.96 and Z=1.96 



 

So, for example, a person with a score of 700 is (approximately) in the 97th percentile if Board scores 
follow a Gaussian (or normal) distribution.  In fact, board scores are nearly normal so this approximation 
is not perfect, but is not bad.  
 
   Example to be done in class:   Anesthesia  (i.e. Halothane) 
 
To put adults to sleep the average dose of Halothane needed is = 50 mg per kg of body weight (in one 
minute) with a standard deviation of  = 10 mg per kg of body weight (in one minute).  
 
 However, the average lethal dose is =110 mg with a standard deviation of  = 20 mg.  
 
Q: What dose will put 90% to sleep?  What percent might die as a result of this dose?  
  
A: (In class)   
  
                   Prediction intervals & “normal” clinical range 

 
When  and  are known population values and the data is assumed to have a Gaussian distribution, 
the interval formed by  
                                                              ( - Z ,   + Z) 
 

is called a prediction interval.  If Z > 0 is the kth Gaussian percentile, the interval formed above 
contains the middle 2k-100 percent of the distribution.  Thus, this interval is called a 2k-100 
percent prediction interval for patients.   For example, if Z=1.96, the k= 97.5th percentile, then 
the interval formed by ( - 1.96,  + 1.96)  is a 2(97.5)-100 = 95% prediction interval (not a 
97.5% prediction interval) since the middle 95% of the population’s values (X) are within these 
bounds. The 95% prediction interval is also sometimes called the “normal” clinical range. If 
Z=1.645, (the 95th percentile), the interval (-1.645σ, +1.645σ) is a 90% prediction interval 
(not 95%). Note that a prediction interval gives the Gaussian theory based percentage of 
individual patient values that lie within the specified bounds. DO NOT confuse this prediction 
interval with confidence intervals which will be studied later.  
 
Crude Rule of thumb (for quantities with a Gaussian distribution)  
 
The middle 95% of patient values (most of the values) are approximately in the “normal” range 
of  

                              (μ – 2 σ,    μ + 2σ) 
 
                        therefore σ ≈  “range” / 4  
 
Where “range” excludes all “unusual” patients (patients below the 2.5th percentile 
and those above 97.5th percentile) 



 

  Differences and sums of normally distributed variables 

 

If Y1 and Y2 each have a normal distribution and are independent with means 
and SDs as given below,  

  variable         mean         SD 

       Y1               µ1            σ1  

       Y2               µ2            σ2  

Then                      mean              SD 

  diff= d= Y1-Y2     µ1-µ2     sqrt(σ1
2 + σ2

2) 

  
 sum=  Y1+Y2       µ1+µ2     sqrt(σ1

2 + σ2
2) 

 

 The difference and the sum have normal distributions as well.    
 

 
 



 

Computing false positive and negative rates from the Gaussian. 
Computing specificity and sensitivity for a diagnostic test. 

 
Let Y = Serum Creatinine in mg/dl  
 
         In normal adults                                        = 1.1 mg/dl    = 0.2 mg/dl 
 
   In (at least one type of) renal disease              = 1.7 mg/dl    = 0.4 mg/dl  
 
We suspect renal disease if Y > 1.6 mg/dl - the cutoff or threshold value (Test is positive for 
disease if Y > 1.6)  
 
Assuming a Gaussian distribution in both populations 
 
Q: What is probability (Pr) of a false positive? (Patient tests positive but is normal) 
 
 Pr( Y > 1.6 given =1.1,  = 0.2)  
 
   Z = (1.6 - 1.1)/0.2 = 2.5  
 
from Gaussian Table, area above 2.5 is .0062 or .62%.  
 
Therefore, specificity = probability of a true negative = 1-.0062 = 0.9938 or about 99% specific.  
 
Specificity = Probability test is negative given that the patient is normal.  
 
Q: What is probability of a false negative ? 
(Patient tests negative even though diseased) 
 
  Pr( Y < 1.6 given =1.7,  = 0.4)  
 
  Z = (1.6 - 1.7)/0.4 = -0.25 
 
from Gaussian Table, area below -.25 is .4013 or about 40%  
 
Therefore sensitivity = probability of a true positive = 1-0.4013 = 0.5987 or about 60% sensitive.  
 
Sensitivity = Probability that the test is positive given that the  
patient actually has disease.     
 
                         (also see notes at end of section 2)  



 

                        Data Transformations, log transformation 
 

One might think that the Gaussian model is not very useful since it is limited only to data that have 
symmetric, unimodal distributions.  It is not a good model for skewed distributions.   
 
However, a skewed distribution can often be made symmetric via a scale transformation, usually just 
called a transformation.  Below is a figure showing the distribution of serum bilirubin in normal adults, 
a quantity that is useful in assessing liver function.  As is obvious from the figure, bilirubin has a skewed 
distribution.  However, the next figure shows the distribution of the same data on a logarithmic scale.  In 
this example, the distribution of log bilirubin is much closer to a symmetric one.  Therefore, using 
Gaussian theory and the mean and standard deviation to summarize the distribution of log bilirubin is 
more meaningful.  That is, the Gaussian model is at least approximately correct on this transformed scale. 
  
 
On the log 10 scale, the mean log bilirubin value is 1.55 log μmol/L.  The antilog of this value is 101.55 = 
35.5 μmol/L.  This antilog of the mean of the log values is called the geometric mean. Notice that it is 
quite a bit lower than the arithmetic mean of 64.3 μmol/L and close to the median of 34.7 μmol/L.  
 
Similarly, if we attempt to compute a “normal” clinical range for the middle 95% of patients using 
Gaussian theory (Z=2) and the mean and SD of the original untransformed data we get the absurd range 
of 64.3 μmol/L +/- 2 x 104.3 μmol/L or  (-144.3  μmol/L, 272.9 μmol/L).  Of course, bilirubin cannot 
have negative values!   
 
However, if we compute a normal clinical range on the log data using Gaussian theory, we obtain 1.55 
log μmol/L +/- 2 x 0.456 log μmol/L or (0.64 log μmol/L, 2.46 log μmol/L) in log 10 units.  To express 
this in the original μmol/L units, we take the antilog of each range endpoint and obtain (100.64, 102.46) or 
(4.3 μmol/L, 290 μmol/L) as our approximate “normal” range.  These values more closely agree with the 
impression we get from the figure of range where the middle 95% of the bilirubin values lie.  
 
While this example is obvious when the data histogram is given, it is less obvious when the histogram is 
not given and only the means and standard deviations are reported. 
 
Many types of continuous data follow a normal distribution on the log scale (log normal 
distribution) including bacterial growth and proliferation measures such as CFU (colony forming 
units), antibody or antigen titers (IgA .. IgG etc), pH, response to sound or other neurological stimuli 
(dB), most steroids and hormones (Estrogen, Testosterone … ), cytokines (IL-1, MCP-1, … ) and 
liver function measures (Bilirubin, Creatinine) to name a few. When no transformation can be found, 
one should quote medians and ranges, not means and SDs.   
 
The distribution of Ratios usually more closely follow the Gaussian on the log scale including ORs, 
RRs and HRs.  On the log scale 100/1 (log=2) is symmetric with 1/100 (log=-2).  
 
  Ratio:          100/1,  10/1,  1/1,  1/10, 1/100 
Log ratio:         2,        1,       0,     -1,     -2  
  



 
            Biulirubin  (μmol/L)                                          log 10 Bilirubin (log μmol/L) 

0 50 100 150 200 250 300 350

             

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25

 
                                                                              

100.0% maximum 1041.6 
 97.5%  367.2 
90.0%  129.3 
75.0% quartile 73.4 
50.0% median 34.7 
25.0% quartile 16.2 
10.0%  10.3 
2.5%  4.6 
0.0% minimum 1.9 

 
 

Mean 64.297 
Std Dev 104.300 

Std Err Mean 7.097 
n 216 

 
 

 

    Geometric mean:  101.55  =  35.5 μmol/L (not 64.3)  
 
        “normal range (mean +/- 2 SD)  
 
         10[1.55 - 2(0.456)]  = 100.64 =   4.3  μmol/L   
         10[1.55 +2(0.456)]  = 102.46 = 289.7 μmol/L 
 
 
 
 
 

100.0% maximum 3.0177 
97.5%  2.5479 
90.0%  2.1116 
75.0% quartile 1.8659 
50.0% median 1.5402 
25.0% quartile 1.2096 
10.0%  1.0127 
2.5%  0.6607 
0.0% minimum 0.2741 

Mean 1.5496 
Std Dev 0.4561 

Std Err Mean 0.0310 
n 216 



 

Normal probability plot–a distribution diagnostic plot 
 

After the data is sorted from lowest to highest and the percentiles computed, the observed Z 
value is plotted versus the expected Z value assuming the percentiles come from a Gaussian 
distribution. 

Normal plot- Bilirubin
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Normal plot - log Bilirubin
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If the data distribution is Gaussian, the plot is a straight line. 



 

Data distributions that tend to be Gaussian on the log scale 
 

Growth measures -    bacterial CFU  
Ab or Ag titers (IgA, IgG, …)  
pH  
Neurological stimuli (dB, Snellen units)  
Steroids, hormones (Estrogen, Testosterone)  
Cytokines (IL-1, MCP-1, …)  
Liver function (Bilirubin, Creatinine)  
Hospital Length of stay (can be Poisson)  
 
The distribution of ratios is much closer to Gaussian on the 
log scale  
 
 The “inverse” of 3/1 is 1/3. This is symmetric only on the log 
scale  
 
  Original:   100/1, 10/1,  1/1, 1/10, 1/100  
  Log:             2,       1,      0,    -1,     -2          
 
            true for OR, RR and HR  
 
Measures of growth & proliferation have distribution closer 
to the Gaussian on the log scale  



 

“Quick” Probability Theory- Terms 
 
Mutually exclusive events  (“or”)    - levels of one variables 
 
When events are mutually exclusive, their probabilities add.  For example, for blood type, one 
must be either type A, type B, type AB or type O. These four categories are exclusive and 
exhaustive. If 50% of the population is type O and 20% is type A, then the probability of being 
type A or type O is 50%+20%=70%.    
 
Independent events  (“and”)   - different variables 
 
If two events are independent, their probabilities multiply.   For example, if 5% of pregnant 
women have gestational diabetes, and 8% have preclampsia and the two events are 
independent, then the probability of having both diabetes and preeclamsia is 5% x 8% = 0.4%. 
This multiplication rule requires independence. It is often misused as independence is lacking.  
 
Conditional probability  
 
The probability of an event changes if it is made conditional on another event.  For example, the 
probability (prevalence) of tuberculosis in the general adult population is only about 0.1%.  But, 
in Vietnamese immigrants the probability is 4%. That is, conditional on being a Vietnamese 
immigrant, the probability of TB is 4%.  
 
Bayes’ rule for computing conditional probability 
 
Probability of B given A = P(B | A)   =  
 
           Joint Probability of A and B  /    Probability of A   =  P(A ∩ B) / P(A)  
 
 =   [Probability of A given B x  Probability of B]  /   Probability of A  
               
                              = [   P(A|B) P(B)  ]   / P(A)        
 
Example: In a population of 1,000,000 persons, 5,000 are Vietnamese immigrants (0.5%). In 
these 1,000,0000, 1000 (0.1%) have TB.  Of all 1000 who have TB, 20% are Vietnamese 
immigrants (we only know ethnicity in TB cases). What is the probability of TB conditional on 
being a Vietnamese  immigrant?                         A = Vietnamese,  B = have TB 
 
P(A) = 5,000/1,000,000 = 5/ 1000 = 0.5% = 0.005 = probability of being Vietnamese in pop 
P(B)  = 0.1% = 0.001    = Probability of TB in population 
P(A|B) = 20% = 0.20    = Conditional Probability of being Vietnamese given that one has TB 
 
   P(B|A)  =  ( 0.20 x 0.001 ) /   0.005 = 0.04 = 4% = Probability of TB given Vietnamese 
 
                   If A and B are independent  P(B|A) = P(B)  



 

 
 
 

         



 

            Bayesian vs Frequentist  
 

The Bayesian approach is to compute 
 
Prob(hypothesis|data) =  
 
         Prob(data|hypothesis)   x    P(hypothesis) 
                 Prob(data) 
 
   =   Data Likelihood  x prior probability  
 
  If data (evidence) refutes a hypothesis then  
            Prob(data | hypothesis)=0 so 
             Prob(hypothesis | data)=0    
 
The frequentist approach is to compute 
 
       Prob(data+|hypothesis)= p value 
 
The p value is the probability of the observed data or something 
more extreme than the observed data (“data+”) under the (null) 
hypothesis.   

 
They are not the same and both can be useful.



 

Binomial distribution for binary data – 0 or 1 per patient 
 

The other extreme from a continuous outcome is a binary (positive or negative) outcome. Sometimes 
we wish to know the probability of “y” positive responders out of  “n” people where “π” is the 
probability of a positive response in any one person (so [1-π] is the probability of a negative 

response) and the response in any person is independent of the response in any other person.  In a set 
of n people (n independent events), there are y positive responders and n-y negative responders.  

 
Examples: 

Binomial Distribution
population Y= number of positive ("yes") responses out of n

pos π = 0.3
neg (1-π)= 0.7

n=1
Y probability
0 0.700
1 0.300

total 1.00

n=2
Y probability
0 0.49
1 0.42
2 0.09

total 1.000

n=3
Y probability
0 0.343
1 0.441
2 0.189
3 0.027

total 1.000

n=4
Y probability
0 0.2401
1 0.4116
2 0.2646
3 0.0756
4 0.0081

total 1.000
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  For n=2, there are three possible values of Y: 0, 1 or 2, each occurring with the probability 
below 
         Y                          probability 
      0=0+0                   (1-π) (1-π) = (1-π)2 
      1=1+0 or 0+1        π (1-π) +  (1-π) π  = 2 π (1-π) 
      2=1+1                       (π )(π) = π2   
            Total                     1.0  

 
In general, the Binomial formula below can be used to compute the probability of “y” positive 

patients out of n patients.  The full formula is  
 

Probability of “y” responders out of “n” patients 

=n!/[y!(n-y)!]  πy  (1-π)(n-y) 
                                          
                                                   [  a!  = a (a-1) (a-2) (a-3) … (3 ) (2) (1)  ] 
 

The expected (mean) number of responses = πn   

   The SD of the number of responses out of n patients is SD=√ [n π (1-π)]  
 
Examples:  Q: What are the expected number of cases of Herpes in 50 
teens if the prevalence is 4%? 
 

A:  π= 0.04,   n=50.    We expect   50 x 0.04 = 2 cases,  
  (SD=√50 x 0.04 x 0.96 = 1.4, but responses don’t have Gaussian distribution) 
 
Q: What is the probability of observing exactly 5 Herpes cases in 50 teens 
if the Herpes prevalence is 4%.    
 

A: Probability =   50!/( 5! 45!)  (0.04)5 (0.96)45  =  0.034561=3.4% 
 
Q: What is the probability of observing 5 or fewer cases? 
(Plug in 5,4,3,2,1,0 and add)   A: probability = 0.98559. 
What is the probability of 6 or more cases = 1-0.98559=0.01441. 
 
Can compute with “=BINOMDIST(y,n,π,0)”  in EXCEL.   For example, 
=BINOMIAL(5,50,0.4,0) is 3.4%.  



 

Special case – a “fair” coin 
 
When π = 0.5,    the probability of “y” successes (“heads”) out of n is just 
  Probability  = n!/[y!(n-y)!] / 2n  
 
Example :   n=3  (flip 3 fair coins),   23 = 8 possibilities  
 
  0+0+0=0=y                  y   freq     prob 
  0+0+1=1=y                  0      1        1/8 
  0+1+0=1=y                  1      3        3/8 
  1+0+0=1=y                  2      3        3/8 
  0+1+1=2=y                  3      1        1/8 
  1+0+1=2=y               total    8        8/8 
  1+1+0=2=y 
  1+1+1=3=y 
 
      Pascal’s triangle   - computing frequencies and probabilities  
 
   n                y: 0 to n successes       2n 
   -                              1 
   1                            1   1                  2 
   2                        1    2   1                4 
   3                       1   3   3  1              8 
   4                     1  4   6  4   1           16 
   5                   1 5  10  10  5  1        32 
 
For n=5,             y          freq     probability 
                           0             1       1/32 
                           1             5       5/32 
                           2           10      10/32 
                           3           10       10/32 
                           4             5        5/32 
                           5             1        1/32 



 

Hypothesis testing- Binomial case 
 
Question:    How likely is y=7 success out of n=10 coins if the coins are 
fair? The coins are fair if π=0.50.  
 
    Probability of 7 success out of 10 =  
 
               10!/(7! x 3!) / 210  =   120/1024 =     0.1172 
 
How likely is 7 or more successes out of n=10? 
 
                        y          probability 
                  7     120/1024 = 0.1172 
                  8       45/1024 = 0.0439 
                  9       10/1024 = 0.0098 
                10         1/1024 = 0.0010 
               total    176/1024= 0.1719 
 
Question:    How likely is observing 70 successes (y=70) out of n=100 if 
the coins are fair? 
 
     Prob(y=70) =  [100!/(70! 30!)] / 2100 =  2.32 x 10-5 
 
How likely is it to observe 70 or more successes out of 100? 
 
 =   prob(y=70) + prob(y=71) +  …+ prob(y=100) =  3.93 x 10-5 
 
This is a simple example of hypothesis testing.    The probability of 
observing y=70 or more successes out of n=100 under the “null 
hypothesis” that the true population π=0.5 is called a one sided p value.  
 
In both cases, the sample proportion is 0.7. But if n=10 the p value is 
0.1719.  If n=100, the p value is 3.93 x 10-5.  
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   Area above y=7 is  0.1172 +  0.0439 + 0.0098 + 0.0010 = 0.1719  
 

 
      Area above y=70 is very small 
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           Gaussian approximation to the Binomial 
             
In general, the binomial distribution is not necessarily symmetric 
 

        π = 0.04,  n=50,  mean =(0.04)(50)=2, SD = 1.4  
Binomial dist
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But, if π is not too close to 0 or 1.0 and n is not too small, the distribution of y, the number (out of n) 
with a positive response, can be approximated by a Gaussian with mean nπ and standard deviation √ 
[n π (1-π)]  
 

             π = 0.15,  n= 50,   mean =0.15(50)=7.5,  SD = 2.5 
Binomial dist

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 
     
         Actual 2.5th percentile between 2 and 3                Gaussian =   7.5 – 2 (2.5) = 2.5 
       Actual 97.5th percentile between 12 and 13          Gaussian = 7.5  + 2(2.5) = 12.5 



 

                  Poisson distribution for count data  
For a patient, y is a positive integer:  0,1,2,3,… 

 

Probability of “y” responses (or events) given mean μ 
 

= (μy e-μ)/ (y!) 
 

(Note:  μ0=1 by definition) 

For Poisson, if mean=μ then SD=√μ 
Examples: number if colds per season, number of firings of a 
neuron in 30 seconds (firing rate).  
 
Q: If the average number colds in a single winter is μ=1.9, what is the probability that 
a given patient will have 4 colds in one winter?       
 
A:  (1.9)4 e-1.9/4x3x2x1 = 0.0812 ≈ 8%.      
                          (Can compute with “=POISSON(4, 1.9,0)”  in EXCEL)  
 
What is the probability of 4 or more (find for 0-3, subtract from 1), prob=12% 

 

 
 
 
 
 
 
 
 
           Note:   y! = y (y-1) (y-2) (y-3) … (2) (1) 
 
           Example:  5! = 5 x 4 x 3 x 2 x 1 = 120 

Poisson distribution,  mean=1.9, SD=1.38
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                       Poisson process 
 

Mean rate of events is h/time unit (Hazard rate). In T time 
units, we expect μ=hT events on average. Can substitute in 

above formula to get probability of “y” events in T time 
units.  

 
Example: Cancer clusters 

 

Q: Given a cancer rate of 3/1000 per year, what is the expected number of cases in 2 
years in a population of 1500? 
A: Rate in 2 years is 2 x (3/1000) =h= 6/1000.  Expected is μ=hT= 6/1000 x 1500 = 9 
cases.  
 

Q: What is the probability of observing exactly 15 cases? 
A:  μ=9, Probability =(915 e-9)/15! = 0.019431≈ 2%. 
 

Q: What is the probability of observing 15 or more cases in 1500 persons? 
A:  Plug in 0,1,2, …14 and add to get Q= probability of 14 or less. Probability is 1-Q 
= 1-0.958534  = 0.041466 ≈ 4%.  
 
T does not have to be time.  For example, in studying traffic accidents, 
investigators are interested in the number of accidents per mile of freeway. 
For T miles of freeway, the number of accidents may follow a Poisson 
distribution with mean hT.  
 
                      Can compute this with “=Poisson(y,mean,cum)”  in EXCEL. 
 
If cum=0, the POISSON function gives the probability of y for the specified mean. If cum=1, 
this function gives the cumulative probability of y or less for the specified mean. For example, 
POISSON(15, 9, 0) gives the probability of y=15 if the mean is 9.  POISSON(15, 9, 1) gives the 
cumulative probability of 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1 and 0 if the mean is 9.  
 



 

  Summary: descriptive statistics for Normal, Binomial & Poisson     
                                   n = sample size  
 
Distribution      mean      variance        SD             SE 
 Normal                µ               σ2             σ               σ/√n  
 Binomial             π            π(1-π)       √π(1-π)     √π(1-π)/n 
 Poisson               µ                µ             √µ             √µ/n 
 
               SD=√variance,  SE=SD/√n 
 
The Binomial and Poisson SDs depend on their means.  This is not true for 
the normal SD. 
 
 
 


